Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification

Abstract

N6-threonylcarbamoyladenosine (t6A) is a universally conserved, essential modified nucleoside found in transfer RNAs (tRNAs) responsible for ANN codons in all three domains of life. t6A has a crucial role in maintaining decoding accuracy during protein synthesis. The presence of t6A in cellular tRNAs has been well documented for more than four decades. However, under conditions optimized for nucleoside preparation, we detected little t6A in tRNAs from Escherichia coli. Instead, we identified a new modified base named 'cyclic t6A' (ct6A), which is a cyclized active ester with an oxazolone ring. An E1-like enzyme, CsdL (renamed as TcdA), which catalyzes ATP-dependent dehydration of t6A to form ct6A, was also identified. Two yeast homologs of tcdA, YHR003C (TCD1) and YKL027W (TCD2), were required for ct6A formation and respiratory cell growth. ct6A was involved in promoting decoding efficiency. Structural modeling suggests that ct6A recognizes the first adenine base of ANN codon at the ribosomal A site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a new modified nucleoside N394 at position 37 of E. coli tRNA.
Figure 2: Structural determination of N394.
Figure 3: Identification of TcdA and in vitro reconstitution of ct6A.
Figure 4: Yeast homologs responsible for ct6A formation are required for respiratory cell growth.
Figure 5: Decoding property of ct6A.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Suzuki, T. Biosynthesis and function of tRNA wobble modifications. in Fine-tuning of RNA Functions by Modification and Editing (ed. Grosjean, H.) 24–69 (Springer-Verlag, New York, 2005).

    Chapter  Google Scholar 

  2. Schweizer, M.P., Chheda, G.B., Baczynskyj, L. & Hall, R.H. Aminoacyl nucleosides. VII. N-(Purin-6-ylcarbamoyl)threonine. A new component of transfer ribonucleic acid. Biochemistry 8, 3283–3289 (1969).

    Article  CAS  Google Scholar 

  3. El Yacoubi, B., Bailly, M. & de Crecy-Lagard, V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 46, 69–95 (2012).

    Article  CAS  Google Scholar 

  4. Wei, F.Y. et al. Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice. J. Clin. Invest. 121, 3598–3608 (2011).

    Article  CAS  Google Scholar 

  5. Niimi, T. et al. Recognition of the anticodon loop of TrnaIle1 by isoleucyl-transfer-RNA synthetase from Escherichia coli. Nucleosides Nucleotides 13, 1231–1237 (1994).

    Article  CAS  Google Scholar 

  6. Yarian, C. et al. Accurate translation of the genetic code depends on tRNA modified nucleosides. J. Biol. Chem. 277, 16391–16395 (2002).

    Article  CAS  Google Scholar 

  7. Phelps, S.S., Malkiewicz, A., Agris, P.F. & Joseph, S. Modified nucleotides in tRNALys and tRNAVal are important for translocation. J. Mol. Biol. 338, 439–444 (2004).

    Article  CAS  Google Scholar 

  8. Lin, C.A., Ellis, S.R. & True, H.L. The Sua5 protein is essential for normal translational regulation in yeast. Mol. Cell. Biol. 30, 354–363 (2010).

    Article  CAS  Google Scholar 

  9. Stuart, J.W. et al. Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A. Biochemistry 39, 13396–13404 (2000).

    Article  CAS  Google Scholar 

  10. Sundaram, M., Durant, P.C. & Davis, D.R. Hypermodified nucleosides in the anticodon of tRNALys stabilize a canonical U-turn structure. Biochemistry 39, 15652 (2000).

    Article  CAS  Google Scholar 

  11. Murphy, F.V., IV, Ramakrishnan, V., Malkiewicz, A. & Agris, P.F. The role of modifications in codon discrimination by tRNALys UUU. Nat. Struct. Mol. Biol. 11, 1186–1191 (2004).

    Article  CAS  Google Scholar 

  12. Nishimura, S. Minor components in transfer RNA: their characterization, location, and function. Prog. Nucleic Acid Res. Mol. Biol. 12, 49–85 (1972).

    Article  CAS  Google Scholar 

  13. Kasai, H. et al. Structure determination of a modified nucleoside isolated from Escherichia coli transfer ribonucleic-acid—N-[N-[(9-β-D-ribofuranosylpurin-6-Yl)carbamoyl]threonyl]2-amido-2-hydroxymethylpropane-1,3-diol. Eur. J. Biochem. 69, 435–444 (1976).

    Article  CAS  Google Scholar 

  14. Salazar, J.C., Ambrogelly, A., Crain, P.F., McCloskey, J.A. & Soll, D. A truncated aminoacyl-tRNA synthetase modifies RNA. Proc. Natl. Acad. Sci. USA 101, 7536–7541 (2004).

    Article  CAS  Google Scholar 

  15. Crain, P.F. Preparation and enzymatic hydrolysis of DNA and RNA for mass spectrometry. Methods Enzymol. 193, 782–790 (1990).

    Article  CAS  Google Scholar 

  16. Martin, D. & Schlimme, E. Preparation of ureidonucleosides of the threonine isomers. Z. Naturforsch. C 49, 834–842 (1994).

    Article  CAS  Google Scholar 

  17. Adamiak, R.W. & Wiewiorowski, M. The modified nucleosides of tRNAs. I. Synthesis and spectra of some natural ureidonucleosides. Bull. Acad Pol. Sci., Ser. Sci. Chim. 23, 241–253 (1975).

    CAS  Google Scholar 

  18. Krog, J.S. et al. 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine is one of two novel post-transcriptional modifications in tRNALys(UUU) from Trypanosoma brucei. FEBS J. 278, 4782–4796 (2011).

    Article  CAS  Google Scholar 

  19. Markowitz, V.M. et al. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res. 40, D115–D122 (2012).

    Article  CAS  Google Scholar 

  20. Ikeuchi, Y., Shigi, N., Kato, J., Nishimura, A. & Suzuki, T. Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol. Cell 21, 97–108 (2006).

    Article  CAS  Google Scholar 

  21. Trotter, V. et al. The CsdA cysteine desulphurase promotes Fe/S biogenesis by recruiting Suf components and participates to a new sulphur transfer pathway by recruiting CsdL (ex-YgdL), a ubiquitin-modifying–like protein. Mol. Microbiol. 74, 1527–1542 (2009).

    Article  CAS  Google Scholar 

  22. Bolstad, H.M., Botelho, D.J. & Wood, M.J. Proteomic analysis of protein-protein interactions within the cysteine sulfinate desulfinase Fe-S cluster biogenesis system. J. Proteome Res. 9, 5358–5369 (2010).

    Article  CAS  Google Scholar 

  23. Kramer, E.B. & Farabaugh, P.J. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13, 87–96 (2007).

    Article  CAS  Google Scholar 

  24. Parthasarathy, R., Ohrt, J.M. & Chheda, G.B. Conformation and possible role of hypermodified nucleosides adjacent to 3′-end of anticodon in tRNA: N-(purin-6-ylcarbamoyl)-L-threonine riboside. Biochem. Biophys. Res. Commun. 60, 211–218 (1974).

    Article  CAS  Google Scholar 

  25. Elkins, B.N. & Keller, E.B. The enzymatic synthesis of N-(purin-6-ylcarbamoyl)threonine, an anticodon-adjacent base in transfer ribonucleic acid. Biochemistry 13, 4622–4628 (1974).

    Article  CAS  Google Scholar 

  26. El Yacoubi, B. et al. The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. Nucleic Acids Res. 37, 2894–2909 (2009).

    Article  CAS  Google Scholar 

  27. El Yacoubi, B. et al. A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J. 30, 882–893 (2011).

    Article  CAS  Google Scholar 

  28. Srinivasan, M. et al. The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. EMBO J. 30, 873–881 (2011).

    Article  CAS  Google Scholar 

  29. Hashimoto, C. et al. Effects on transcription of mutations in ygjD, yeaZ, and yjeE genes, which are involved in a universal tRNA modification in Escherichia coli. J. Bacteriol. 193, 6075–6079 (2011).

    Article  CAS  Google Scholar 

  30. Miyauchi, K., Ohara, T. & Suzuki, T. Automated parallel isolation of multiple species of non-coding RNAs by the reciprocal circulating chromatography method. Nucleic Acids Res. 35, e24 (2007).

    Article  Google Scholar 

  31. Suzuki, T., Ikeuchi, Y., Noma, A., Suzuki, T. & Sakaguchi, Y. Mass spectrometric identification and characterization of RNA-modifying enzymes. Methods Enzymol. 425, 211–229 (2007).

    Article  CAS  Google Scholar 

  32. Ikeuchi, Y. et al. Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nat. Chem. Biol. 6, 277–282 (2010).

    Article  CAS  Google Scholar 

  33. Adamiak, R.W. et al. The chemical synthesis of the anticodon loop of an eukaryotic initiator tRNA containing the hypermodified nucleoside N6-/N-threonylcarbonyl/-adenosine/t6A/1. Nucleic Acids Res. 5, 1889–1905 (1978).

    Article  CAS  Google Scholar 

  34. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  Google Scholar 

  35. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  36. Kimura, S. & Suzuki, T. Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA. Nucleic Acids Res. 38, 1341–1352 (2010).

    Article  CAS  Google Scholar 

  37. Komoda, T. et al. The A-site finger in 23 S rRNA acts as a functional attenuator for translocation. J. Biol. Chem. 281, 32303–32309 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the Suzuki laboratory, especially T. Suzuki, A. Nagao, Y. Sakaguchi, T. Ohira, M. Ohara, T. Chujo, H. Takeda, Y. Ikeuchi, T. Taniguchi and T. Sakashita for technical assistance and fruitful discussions. Special thanks are due to R.W. Adamiak (Polish Academy of Sciences) for providing t6A. This work was supported by the Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan (to T.S.) and by a grant from the New Energy and Industrial Technology Development Organization (to T.S.).

Author information

Authors and Affiliations

Authors

Contributions

K.M. and T.S. designed this study. K.M. and S.K. performed the series of experiments. K.M. and T.S. wrote this paper. T.S. supervised all work.

Corresponding author

Correspondence to Tsutomu Suzuki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 1411 kb)

Supplementary Data Set 1

Candidate genes for ct6A formation selected by the Integrated Microbial Genomes (IMG) system (XLS 0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyauchi, K., Kimura, S. & Suzuki, T. A cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification. Nat Chem Biol 9, 105–111 (2013). https://doi.org/10.1038/nchembio.1137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing