Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preparation of functionalized organoaluminiums by direct insertion of aluminium to unsaturated halides

Abstract

The preparation of polyfunctional organometallics is important in organic synthesis as these reagents are very popular nucleophiles. The preparation of functionalized aluminium reagents by direct insertion of aluminium powder is in general not possible. Such a reaction would be of special importance owing to the low price of aluminium compared with magnesium (it is half the price), the low toxicity of this metal and the chemoselectivity of the resultant organoaluminium reagents. We have now found that by adding catalytic amounts of selected metallic chlorides (TiCl4, BiCl3, InCl3 or PbCl2) in the presence of LiCl, aluminium powder inserts into various unsaturated iodides and bromides under mild conditions. These resulting new organoaluminium reagents undergo smooth Pd-catalysed cross-coupling and acylation reactions, as well as copper-catalysed allylic substitutions, affording various interesting products for pharmaceutical and material science applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Knochel, P. Handbook of Functionalized Organometallics (Wiley-VCH, 2005).

  2. Grignard, V. Mixed organomagnesium combinations and their application in acid, alcohol, and hydrocarbon synthesis. Ann. Chim. 24, 433–490 (1901).

    CAS  Google Scholar 

  3. Mole, T. & Jeffery, E. A. Organoaluminum Compounds (Elsevier, 1972).

  4. Rieke, R. D. Preparation of organometallic compounds from highly reactive metal powders. Science 246, 1260–1264 (1989).

    Article  CAS  Google Scholar 

  5. Rieke, R. D. & Hanson, M. V. New organometallic reagents using highly reactive metals. Tetrahedron 53, 1925–1956 (1997).

    Article  CAS  Google Scholar 

  6. Lee, J., Velarde-Ortiz, R., Guijarro, A., Wurst, J. R. & Rieke, R. D. Low-temperature formation of functionalized Grignard reagents from direct oxidative addition of active magnesium to aryl bromides. J. Org. Chem. 65, 5428–5430 (2000).

    Article  CAS  Google Scholar 

  7. Tilstam, U. & Weinmann, H. Activation of Mg metal for safe formation of Grignard reagents on plant scale. Org. Process Res. Dev. 6, 906–910 (2002).

    Article  CAS  Google Scholar 

  8. Baker, K. V., Brown, J. M., Hughes, N., Skarnulis, A. J. & Sexton A. Mechanical activation of magnesium turnings for the preparation of reactive Grignard reagents. J. Org. Chem. 56, 698–703 (1991).

    Article  CAS  Google Scholar 

  9. Knochel, P., Millot, N., Rodriguez, A. L. & Tucker, C. E. in Organic Reactions (ed. Overman, L. E.) Vol. 58 (Wiley-VCH, 2001).

  10. Saito, S. in Comprehensive Organometallic Chemistry III (ed. Knochel, P.) Vol. 9 (Elsevier, 2007).

  11. Uchiyama, M., Naka, H., Matsumoto, Y. & Ohwada, T. Regio- and chemoselective direct generation of functionalized aromatic aluminum compounds using aluminum ate base. J. Am. Chem. Soc. 126, 10526–10527 (2007).

    Article  Google Scholar 

  12. Naka, H. et al. An aluminum ate base: Its design, structure, function, and reaction mechanism. J. Am. Chem. Soc. 129, 1921–1930 (2007).

    Article  CAS  Google Scholar 

  13. Naka, H. et al. Mixed alkylamido aluminate as a kinetically controlled base. J. Am. Chem. Soc. 130, 16193–16200 (2008).

    Article  CAS  Google Scholar 

  14. Wunderlich, S. & Knochel, P. Aluminum bases for the highly chemoselective preparation of aryl and heteroaryl aluminum compounds. Angew. Chem. Int. Ed. 48, 1501–1504 (2009).

    Article  CAS  Google Scholar 

  15. Ishikawa, T., Ogawa, A. & Hirao, T. A novel oxovanadium(v)-induced oxidation of organoaluminum compounds. Highly selective coupling of organic substituents on aluminum. J. Am. Chem. Soc. 120, 5124–5125 (1998).

    Article  CAS  Google Scholar 

  16. Hawner, C., Li, K., Cirriez, V. & Alexakis, A. Copper-catalyzed asymmetric conjugate addition of aryl aluminum reagents to trisubstituted enones: Construction of aryl-substituted quaternary centers. Angew. Chem. Int. Ed. 47, 8211–8214 (2008).

    Article  CAS  Google Scholar 

  17. Westermann, J., Imbery, U., Nguyen, A. T. & Nickisch, K. Nickel-catalysed 1,4-addition of aryl groups to enones using arylalkylaluminum compounds. Eur. J. Inorg. Chem. 295–298 (1998).

  18. Gao, H. & Knochel, P. New preparation and reactions of arylaluminum reagents using barbier conditions. Synlett 1321–1325 (2009).

  19. Hallwachs, W. & Schafarik, A. Ueber die Verbindungen der Erdmetalle mit organischen Radicalen. Liebigs Ann. Chem. 109, 206–209 (1859).

    Article  Google Scholar 

  20. Spencer, J. F. & Wallace, M. L. The interaction of metals of the aluminium group and organic halogen derivatives. J. Am. Chem. Soc. 93, 1827–1833 (1908).

    Article  CAS  Google Scholar 

  21. Grosse, A. V. & Mavity, J. M. Organoaluminum compounds I. Methods of preparation. J. Org. Chem. 5, 106–121 (1940).

    Article  CAS  Google Scholar 

  22. Krasovskiy, A., Malakhov, V., Gavryushin, A. & Knochel, P. Efficient synthesis of functionalized organozinc compounds by the direct insertion of zinc into organic iodides and bromides. Angew. Chem. Int. Ed. 45, 6040–6044 (2006).

    Article  CAS  Google Scholar 

  23. Boudet, N., Sase S., Sinha, P., Liu, C.-Y., Krasovskiy, A. & Knochel, P. Directed ortho insertion (DoI): a new approach to functionalized aryl and heteroaryl zinc reagents. J. Am. Chem. Soc. 129, 12358–12359 (2007).

    Article  CAS  Google Scholar 

  24. Metzger, A., Schade, M. A. & Knochel, P. LiCl-mediated preparation of highly functionalized benzylic zinc chlorides. Org. Lett. 10, 1107–1110 (2008).

    Article  CAS  Google Scholar 

  25. Chen, Y.-H. & Knochel, P. Preparation of aryl and heteroaryl indium(iii) reagents by the direct insertion of indium in the presence of LiCl. Angew. Chem. Int. Ed. 47, 7648–7651 (2008).

    Article  CAS  Google Scholar 

  26. Chen, Y.-H., Sun, M. & Knochel, P. LiCl-mediated preparation of functionalized benzylic indium(iii) halides and highly chemoselective palladium-catalyzed cross-coupling in a protic cosolvent. Angew. Chem. Int. Ed. 48, 2236–2239 (2009).

    Article  CAS  Google Scholar 

  27. Piller, F. M., Appukkutan, P., Gavryushin, A., Helm, M. & Knochel, P. Convenient preparation of polyfunctional aryl magnesium reagents by a direct magnesium insertion in the presence of LiCl. Angew. Chem. Int. Ed. 47, 6802–6806 (2008).

    Article  CAS  Google Scholar 

  28. Metzger, A., Piller, F. M. & Knochel, P. Polyfunctional benzylic zinc chlorides by the direct insertion of magnesium into benzylic chlorides in the presence of LiCl and ZnCl2 . Chem. Commun. 5824–5826 (2008).

  29. Negishi, E.-i., Takahashi, T., Baba, S., Van Horn, D. E. & Okukado, N. Palladium- or nickel-catalyzed reactions of alkenylmetals with unsaturated organic halides as a selective route to arylated alkenes and conjugated dienes: Scope, limitations and mechanism. J. Am. Chem. Soc. 109, 2393–2401 (1987).

    Article  CAS  Google Scholar 

  30. Negishi, E.-i. Palladium- or nickel-catalyzed cross coupling. A new selective method for carbon-carbon bond formation. Acc. Chem. Res. 15, 340–348 (1982).

    Article  CAS  Google Scholar 

  31. Ku, S.-L., Hui, X.-P., Chen, C.-A., Kuo, Y.-Y. & Gau, H.-M. AlAr3(THF): Highly efficient reagents for cross-couplings with aryl bromides and chlorides catalyzed by the economic palladium complex of PCy3 . Chem. Commun. 3847–3849 (2007).

  32. Zweifel, G. & Miller, J. A. in Organic Reactions (ed. Dauben W. G.) Vol. 32 (John Wiley & Sons, 1984).

  33. Araki, S., Jin, S.-J., Idou, Y. & Butsugan, Y. Allylation of carbonyl compounds with catalytic amount of indium. Bull. Chem. Soc. Jpn 65, 1736–1738 (1992).

    Article  CAS  Google Scholar 

  34. Takai, K. & Ikawa, Y. Indium-catalyzed reduction of allyl bromide with gallium or aluminum formation of allylgallium and allylaluminum sesquibromides. Org. Lett. 4, 1727–1729 (2002).

    Article  CAS  Google Scholar 

  35. Augé, J., Lubin-Germain, N. & Thiaw-Woaye, A. Indium-catalyzed allylation of carbonyl compounds with the Mn/TMSCl system. Tetrahedron Lett. 20, 9245–9247 (1999).

    Article  Google Scholar 

  36. Tanaka, H. & Kuroboshi, M. Aluminum as an electron pool for organic synthesis - multi-metal redox promoted reactions. Curr. Org. Chem. 8, 1027–1056 (2004).

    Article  CAS  Google Scholar 

  37. Takai, K., Ueda, T., Hayashi, T. & Moriwake, T. Activation of manganese metal by a catalytic amount of PbCl2 and Me3SiCl. Tetrahedron Lett. 37, 7049–7052 (1996).

    Article  CAS  Google Scholar 

  38. Takai, K., Ueda, T., Ikeda, N., Ishiyama, T. & Matsushita, H. Successive carbon-carbon bond formation by sequential generation of radical anionic species with manganese and catalytic amounts of PbCl2 and Me3SiCl. Bull. Chem. Soc. Jpn 76, 347–353 (2003).

    Article  CAS  Google Scholar 

  39. Takai, K., Kakiuchi, T. & Utimoto, K. A dramatic effect of a catalytic amount of lead on the Simmons-Smith reaction and formation of alkylzinc compounds from iodoalkanes. Reactivity of zinc metal: Activation and deactivation. J. Org. Chem. 59, 2671–2673 (1994).

    Article  CAS  Google Scholar 

  40. Zhang, X.-L., Han, Y., Tao, W.-T. & Huang, Y.-Z. PbCI2/Ga bimetal redox system-mediated carbon–carbon bond formation reactions between carbonyl compounds and ethyl trichloroacetate and lodoacetonitrile. J. Chem. Soc. Perkin Trans. 1 189–191 (1995).

  41. Loh, T.-P. & Chua, G.-L. Discovery of indium complexes as water-tolerant Lewis acids. Chem. Commun. 2739–2749 (2006).

  42. Araki, S. & Hirashita, T. in Comprehensive Organometallic Chemistry III (ed. Knochel, P.) (Pergamon Press, 2007).

  43. Augé, J., Lubin-Germain, N. & Uziel, J. Recent advances in indium-promoted organic reactions. Synthesis 1739–1764 (2007).

  44. O Brien, C. J. et al. Easily prepared air- and moisture-stable Pd-NHC (NHC=N-heterocyclic carbene) complexes: A reliable, user-friendly, highly active palladium precatalyst for the Suzuki-Miyaura reaction. Chem. Eur. J. 12, 4743–4748 (2006).

    Article  CAS  Google Scholar 

  45. Organ, M. G., Calimsiz, S., Sayah, M., Hoi, K. H. & Lough, A. J. Pd-PEPPSI-IPent: An active, sterically demanding cross-coupling catalyst and its application in the synthesis of tetra-ortho-substituted biaryls. Angew. Chem. Int. Ed. 48, 2383–2387 (2009).

    Article  CAS  Google Scholar 

  46. Srogl, J. Allred, G. D. & Liebeskind, L. S. Sulfonium salts. Participants par excellence in metal-catalyzed carbon-carbon bond-forming reactions. J. Am. Chem. Soc. 119, 12376–12377 (1997).

    Article  CAS  Google Scholar 

  47. Prokopcov, H. & Kappe C. O. The Liebeskind-Srogl C–C cross-coupling reaction. Angew. Chem. Int. Ed. 48, 2276–2286 (2009).

    Article  Google Scholar 

  48. Fausett, B. W. & Liebeskind, L. S. Palladium-catalyzed coupling of thiol esters with aryl and primary and secondary alkyl organoindium reagents. J. Org. Chem. 70, 4851–4853 (2005).

    Article  CAS  Google Scholar 

  49. Villiéras, J. & Rambaud, M. Wittig-Horner reaction in heterogeneous media; 1. An easy synthesis of ethyl-hydroxymethylacrylate and ethyl-halomethylacrylates using formaldehyde in water. Synthesis 11, 924–926 (1982).

    Google Scholar 

  50. Knochel, P., Yeh, M. C. P., Berk, S. C. & Talbert, J. Synthesis and reactivity toward acyl chlorides and enones of the new highly functionalized copper reagents RCu(CN)ZnI. J. Org. Chem. 53, 2390–2392 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.-H.C. thanks the Humboldt Foundation for financial support. We thank the Fonds der Chemischen Industrie, the DFG and the European Research Council for financial support. We thank Chemetall and BASF for the generous gift of chemicals.

Author information

Authors and Affiliations

Authors

Contributions

T.B. and Y.-H.C. contributed equally to this work. Z.P. assisted in conducting and analysing the chemical experiments. P.K. designed and directed the project and wrote the manuscript with contributions from Y.-H.C. and T.B. All authors contributed to discussions.

Corresponding author

Correspondence to Paul Knochel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1342 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blümke, T., Chen, YH., Peng, Z. et al. Preparation of functionalized organoaluminiums by direct insertion of aluminium to unsaturated halides. Nature Chem 2, 313–318 (2010). https://doi.org/10.1038/nchem.590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing