Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry

Abstract

On planet Earth, water is everywhere: the majority of the surface is covered with it; it is a key component of all life; its vapour and droplets fill the lower atmosphere; and even rocks contain it and undergo geomorphological changes because of it. A community of physical scientists largely drives studies of the chemistry of water and aqueous solutions, with expertise in biochemistry, spectroscopy and computer modelling. More recently, however, supramolecular chemists — with their expertise in macrocyclic synthesis and measuring supramolecular interactions — have renewed their interest in water-mediated non-covalent interactions. These two groups offer complementary expertise that, if harnessed, offer to accelerate our understanding of aqueous supramolecular chemistry and water writ large. This Review summarizes the state-of-the-art of the two fields, and highlights where there is latent chemical space for collaborative exploration by the two groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of how gross shape influences solute solvation.
Figure 2: Illustrative water-soluble hosts (not all shown with water-solubilizing groups) and examples of foldamers.
Figure 3: The Hofmeister series for anions.

Similar content being viewed by others

References

  1. Petersen, P. B. & Saykally, R. J. On the nature of ions at the liquid water surface. Ann. Rev. Phys. Chem. 57, 333–364 (2006).

    Article  CAS  Google Scholar 

  2. Verreault, D. & Allen, H. C. Bridging the gap between microscopic and macroscopic views of air/aqueous salt interfaces. Chem. Phys. Lett. 586, 1–9 (2013).

    Article  CAS  Google Scholar 

  3. Raymond, E. A. & Richmond, G. L. Probing the molecular structure and bonding of the surface of aqueous salt solutions. J. Phys. Chem. B 108, 5051–5059 (2004).

    Article  CAS  Google Scholar 

  4. Pegram, L. M. & Record, M. T. J. Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air–water interface. J. Phys. Chem. B 111, 5411–5417 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Jungwirth, P. & Tobias, J. W. Specific ion effects at the air/water interface. Chem. Rev. 106, 1259–1281 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Otten, D. E., Shaffer, P. R., Geissler, P. L. & Saykally, R. J. Elucidating the mechanism of selective ion adsorption to the liquid water surface. Proc. Natl Acad. Sci. USA 109, 701–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perera, P., Wyche, M., Loethen, Y. & Ben-Amotz, D. Solute-induced perturbations of solvent-shell molecules observed using multivariate raman curve resolution. J. Am. Chem. Soc. 130, 4576–4577 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Rembert, K. B. et al. Molecular mechanisms of ion-specific effects on proteins. J. Am. Chem. Soc. 134, 10039–10046 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Gibb, C. L. & Gibb, B. C. Anion binding to hydrophobic concavity is central to the salting-in effects of hofmeister chaotropes. J. Am. Chem. Soc. 133, 7344–7347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pegram, L. M. & Record, M. T. J. Thermodynamic origin of hofmeister ion effects. J. Phys. Chem. B 112, 9428–9436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harries, D., Rau, D. C. & Parsegian, V. A. Solutes probe hydration in specific association of cyclodextrin and adamantane. J. Am. Chem. Soc. 127, 2184–2190 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Vincent, J. C. et al. Specific ion interactions with aromatic rings in aqueous solutions: comparison of molecular dynamics simulations with a thermodynamic solute partitioning model and Raman spectroscopy. Chem. Phys. Lett. 638, 1–8 (2015).

    Article  CAS  Google Scholar 

  13. Ben-Amotz, D. Interfacial solvation thermodynamics. J. Phys. Conden. Matter 28, 414013 (2016).

    Article  CAS  Google Scholar 

  14. Tobias, D. J., Stern, A. C., Baer, M. D., Levin, Y. & Mundy, C. J. Simulation and theory of ions at atmospherically relevant aqueous liquid–air interfaces. Ann. Rev. Phys. Chem. 64, 339–359 (2013).

    Article  CAS  Google Scholar 

  15. Fox, J. M. et al. Interactions between Hofmeister anions and the binding pocket of a protein. J. Am. Chem. Soc. 137, 3859–3866 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gibb, B., Mobley, D., Amar, F. & Cremer, P. Accelerating our Understanding of Supramolecular Chemistry in Aqueous Solutions: A Workshop Proposal CHE 1450865 (2015).

    Google Scholar 

  17. Keutsch, F. N. & Saykally, R. J. Water clusters: untangling the mysteries of the liquid, one molecule at a time. Proc. Natl Acad. Sci. USA 98, 10533–10540 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perez, C. et al. Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 336, 897–901 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Cole, W. T., Farrell, J. D., Wales, D. J. & Saykally, R. J. Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 mum. Science 352, 1194–1197 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Perez, C. et al. Hydrogen bond cooperativity and the three-dimensional structures of water nonamers and decamers. Angew. Chemie 53, 14368–14372 (2014).

    Article  CAS  Google Scholar 

  21. Smith, J. D. et al. Energetics of hydrogen bond network rearrangements in liquid water. Science 306, 851–853 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Head-Gordon, T. & Johnson, M. E. Tetrahedral structure or chains for liquid water. Proc. Natl Acad. Sci. USA 103, 7973–7977 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wernet, P. et al. The structure of the first coordination shell in liquid water. Science 304, 995–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Ben-Amotz, D. Water-mediated hydrophobic interactions. Annu. Rev. Phys. Chem. 67, 617–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Bakker, H. J. Water's response to the fear of water. Nature 491, 533–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Chandler, D. Oil in troubled waters. Nature 445, 831–832 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Blokzijl, W. & Engberts, J. B. F. N. Hydrophobic effects. Opinions and facts. Angew. Chem. Int. Ed. 32, 1545–1579 (1993).

    Article  Google Scholar 

  28. Snyder, P. W., Lockett, M. R., Moustakas, D. T. & Whitesides, G. M. Is it the shape of the cavity, or the shape of the water in the cavity? Euro. Phys. J. Special Topics 223, 853–891 (2014).

    Article  Google Scholar 

  29. Baron, R., Setny, P. & McCammon, J. A. Water in cavity-ligand recognition. J. Am. Chem. Soc. 132, 12091–12097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hillyer, M. B. & Gibb, B. C. Molecular shape and the hydrophobic effect. Annu. Rev. Phys. Chem. 67, 307–329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rasaiah, J. C., Garde, S. & Hummer, G. Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu. Rev. Phys. Chem. 59, 713–740 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Chorny, I., Dill, K. A. & Jacobson, M. P. Surfaces affect ion pairing. J. Phys. Chem. B 109, 24056–24060 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Crini, G. Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Lagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. The Cucurbit[n]uril Family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005).

    Article  CAS  Google Scholar 

  35. Yawer, M. A., Havel, V. & Sindelar, V. A bambusuril macrocycle that binds anions in water with high affinity and selectivity. Angew. Chem. Int. Ed. 54, 276–279 (2015).

    Article  CAS  Google Scholar 

  36. Topics in Current Chemistry: Polyarenes I. Vol. 349 (Springer, 2014).

  37. Topics in Current Chemistry: Polyarenes II. Vol. 350 (Springer, 2014).

  38. Xue, M., Yang, Y., Chi, X., Zhang, Z. & Huang, F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Neri, P., Sessler, J. L., Wang, M.-X. (eds) Calixarenes and Beyond (Springer, 2016).

    Book  Google Scholar 

  40. Jordan, J. H. & Gibb, B. C. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 44, 547–585 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chemie. Int. Ed. 48, 3418–3438 (2009).

    Article  CAS  Google Scholar 

  42. Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, Y.-D. & Gellman, S. Peptidomimetics. Acc. Che. Res. 41, 1231–1232 (2008).

    Article  CAS  Google Scholar 

  44. Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. A field guide to foldamers. Chem. Rev. 101, 3893–4012 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Huc, I. & Jiang, H. Supramolecular Chemistry: From Molecules to Nanomaterials Vol. 5, 2183–2206 (Wiley, 2012).

    Google Scholar 

  46. Hooley, R. J., Restrop, P., Iwasawa, T. & Rebek, J., Jr. Cavitands with introverted functionality stabilize tetrahedral. J. Am. Chem. Soc. 129, 15639–15643 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Hua, Y., Liu, Y., Chen, C.-H. & Flood, A. H. Hydrophobic collapse of foldamer capsules drives picomolar-level chloride binding in aqueous acetonitrile solutions. J. Am. Chem. Soc. 135, 14401–14412 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Chandramouli, N. et al. Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose. Nat. Chem. 7, 334–341 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Berne, B. J., Weeks, J. D. & Zhou, R. Dewetting and hydrophobic interaction in physical and biological systems. Ann. Rev. Phys. Chem. 60, 85–103 (2009).

    Article  CAS  Google Scholar 

  50. Rekharsky, M. V. & Inoue, Y. Solvent and guest isotope effects on complexation thermodynamics of α-, β- and 6-amino-6-deoxy-β-cyclodextrins. J. Am. Chem. Soc. 124, 12361–12371 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Rekharsky, M. V. & Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Shirts, M. R. et al. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset. J. Comput. Aided Mol. Des. https://doi.org/10.1007/s10822-016-9977–1 (2016).

  53. van der Vegt, N. F. et al. Water-mediated ion pairing: occurrence and relevance. Chem. Rev. 116, 7626–7641 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Inoue, Y. & Rekharsky, M. in Supramolecular Chemistry: From Molecules to Nanomaterials Vol. 1 (eds Steed, J. W. & Gale, P. A.) 117 (Wiley, 2012).

    Google Scholar 

  55. Mobley, D. L. & Gilson, M. K. Predicting binding free energies: frontiers and benchmarks. Ann. Rev. Biophys. 46, 531–538 (2017).

    Article  CAS  Google Scholar 

  56. Yin, J. et al. Overview of the SAMPL5 host-guest challenge: are we doing better? J. Comput. Aided Mol. Des. 31, 1–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Muddana, H. S., Fenley, A. T., Mobley, D. L. & Gilson, M. K. The SAMPL4 host-guest blind prediction challenge: an overview. J. Comput. Aided Mol. Des. 28, 305–317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Young, T. et al. Dewetting transitions in protein cavities. Proteins 78, 1856–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jamadagni, S. N., Godawat, R. & Garde, S. Hydrophobicity of proteins and interfaces: insights from density fluctuations. Ann. Rev. Chem. Biomol. Eng. 2, 147–171 (2011).

    Article  CAS  Google Scholar 

  60. Biedermann, F., Nau, W. M. & Schneider, H. J. The hydrophobic effect revisited — studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53, 11158–11171 (2014).

    Article  CAS  Google Scholar 

  61. Ben-Amotz, D. & Underwood, R. Unraveling water's entropic mysteries: a unified view of nonpolar, polar, and ionic hydration. Acc. Chem. Res. 41, 957–967 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Nguyen, C. N., Young, T. K. & Gilson, M. K. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril. J. Chem. Phys. 137, 044101 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Guimaraes, C. R. & Mathiowetz, A. M. Addressing limitations with the MM-GB/SA scoring procedure using the WaterMap method and free energy perturbation calculations. J. Chem. Info. Model. 50, 547–559 (2010).

    Article  CAS  Google Scholar 

  64. Michel, J., Tirado-Rives, J. & Jorgensen, W. L. Prediction of the water content in protein binding sites. J. Phys. Chem. B 113, 13337–13346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Davis, J. G., Gierszal, K. P., Wang, P. & Ben-Amotz, D. Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582–585 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Rubtsova, N. I. & Rubtsov, I. V. Vibrational energy transport in molecules studied by relaxation-assisted two-dimensional infrared spectroscopy. Ann. Rev. Phys. Chem. 66, 717–738 (2015).

    Article  CAS  Google Scholar 

  67. Gurau, M. C. et al. Thermodynamics of phase transitions in langmuir monolayers observed by vibrational sum frequency spectroscopy. J. Am. Chem. Soc. 125, 11166–11167 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Huang, K. Y. et al. Stability of protein-specific hydration shell on crowding. J. Am. Chem. Soc. 138, 5392–5402 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Riggle, B. A., Wang, Y. & Dmochowski, I. J. A 'Smart' 129Xe NMR biosensor for pH-dependent cell labeling. J. Am. Chem. Soc. 137, 5542–5548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Avram, L., Irona, M. A. & Bar-Shir, A. Amplifying undetectable NMR signals to study host–guest interactions and exchange. Chem. Sci. 7, 6905–6909 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Conti Nibali, V. & Havenith, M. New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J. Am. Chem. Soc. 136, 12800–12807 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Stewart, S., Ivy, M. A. & Anslyn, E. V. The use of principal component analysis and discriminant analysis in differential sensing routines. Chem. Soc. Rev. 43, 70–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, S. K., Shi, X., Park, S., Ha, T. & Zimmerman, S. C. A dendritic single-molecule fluorescent probe that is monovalent, photostable and minimally blinking. Nat. Chem. 5, 692–697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lewandowski, B. et al. Sequence-specific peptide wynthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Cheng, C. et al. An artificial molecular pump. Nat. Nanotech. 10, 547–553 (2015).

    Article  CAS  Google Scholar 

  76. Chodera, J. D. & Mobley, D. L. Entropy–enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Ann. Rev. Biophys. 42, 121–142 (2013).

    Article  CAS  Google Scholar 

  77. Myszka, D. G. et al. The ABRF-MIRG'02 study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction. J. Biomol. Tech. 14, 247–269 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Zimmerman, S. C. & Saionz, K. W. Quantitative host-guest complexation studies using chemically bonded stationary phases. A comparison of hplc and solution enthalpies. J. Am. Chem. Soc. 117, 1175–1176 (1995).

    Article  CAS  Google Scholar 

  80. Petersen, P. B. & Saykally, R. J. Is the liquid water surface basic or acidic? Macroscopic vs. molecular-scale investigations. Chem. Phys. Lett. 458, 255–261 (2008).

    Article  CAS  Google Scholar 

  81. Beattie, J. K., Djerdjev, A. N. & Warr, G. G. The surface of neat water is basic. Faraday Discuss 141, 31–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Sharp, K. A. & Honig, B. Calculating total electrostatic energies with the nonlinear Poisson–Boltzmann Equation. J. Phys. Chem. 94, 7684–7692 (1990).

    Article  CAS  Google Scholar 

  83. Rogers, D. M. & Beck, T. L. Quasichemical and structural analysis of polarizable anion hydration. J. Chem. Phys. 132, 014505 (2010).

    Article  PubMed  CAS  Google Scholar 

  84. Zhang, Y. & Cremer, P. S. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10, 658–663 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Jungwirth, P. & Cremer, P. S. Beyond Hofmeister. Nat. Chem. 6, 261–263 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Sokkalingam, P., Shraberg, J., Rick, S. W. & Gibb, B. C. Binding hydrated anions with hydrophobic pockets. J. Am. Chem. Soc. 138, 48–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Watson, J. D. & Milner-White, E. J. A novel main-chain anion-binding site in proteins: the nest. A particular combination of phi, psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J. Molec. Biol. 315, 171–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Denessiouk, K. A., Johnson, M. S. & Denesyuk, A. I. Novel CαNN structural motif for protein recognition of phosphate ions. J. Mol. Biol. 345, 611–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Langton, M. J., Serpell, C. J. & Beer, P. D. Anion recognition in water: recent advances from a supramolecular and macromolecular perspective. Angew. Chem. Int. Ed. 55, 1974–1987 (2016).

    Article  CAS  Google Scholar 

  90. Bai, C. & Herzfeld, J. Surface propensities of the self-ions of water. Central Sci. 2, 225–231 (2016).

    Article  CAS  Google Scholar 

  91. Collins, K. D. & Washabaugh, M. W. The Hofmeister effect and the behavior of water at interfaces. Quart. Rev. Biophys. 18, 323–422 (1985).

    Article  CAS  Google Scholar 

  92. Tarbuck, T. L., Ota, S. T. & Richmond, G. L. Spectroscopic studies of solvated hydrogen and hydroxide ions at aqueous surfaces. J. Am. Chem. Soc. 128, 14519–14527 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Umeyama, H. & Morokuma, K. The origin of hydrogen bonding: an energy decomposition study. J. Am. Chem. Soc. 99, 1316–1332 (1977).

    Article  CAS  Google Scholar 

  94. Sherrill, C. D. Energy component analysis of pi interactions. Acc. Chem. Res. 46, 1020–1028 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Gale, Philip A., Howe, Ethan N. W. & Wu, X. Anion receptor chemistry. Chem 1, 351–422 (2016).

    Article  CAS  Google Scholar 

  96. Okur, H. I., Kherb, J. & Cremer, P. S. Cations bind only weakly to amides in aqueous solutions. J. Am. Chem. Soc. 135, 5062–5067 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Steed, J. W. & Atwood, J. L. Supramolecular Chemistry 2nd edn (John Wiley and Sons, 2009).

    Book  Google Scholar 

  98. Gokel, G. W., Leevy, W. M. & Weber, M. E. Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104, 2723–2750 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Inokuchi, Y. et al. Ultraviolet photodissociation spectroscopy of the cold K+·calix[4]arene complex in the gas phase. J. Phys. Chem. A 119, 8512–8518 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Rodriguez, J. D. & Lisy, J. M. Probing ionophore selectivity in Argon-tagged hydrated alkali metal ion-crown ether systems. J. Am. Chem. Soc. 133, 11136–11146 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Gokel, G. W., Barbour, L. J., De Wall, S. L. & Meadows, E. S. Macrocyclic polyethers as probes to assess and understand alkali metal cation–π interactions. Coord. Chem. Rev. 222, 127–154 (2001).

    Article  CAS  Google Scholar 

  102. Si, W., Xin, P., Li, Z.-T. & Hou, J.-L. Tubular unimolecular transmembrane channels: construction strategy and transport activities. Acc. Chem. Res. 48, 1612–1619 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Varma, S., Rogers, D. M., Pratt, L. R. & Rempe, S. B. Perspectives on: ion selectivity: design principles for K+ selectivity in membrane transport. J. Gen. Physiol. 137, 479–488 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Behr, J. P., Kirch, M. & Lehn, J. M. Carrier-mediated transport through bulk liquid membranes: dependence of transport rates and selectivity on carrier properties in a diffusion-limited process. J. Am. Chem. Soc. 107, 241–246 (1985).

    Article  CAS  Google Scholar 

  105. Poul, N. L. et al. Monocopper center embedded in a biomimetic cavity: from supramolecular control of copper coordination to redox regulation. J. Am. Chem. Soc. 129, 8801–8810 (2007).

    Article  PubMed  CAS  Google Scholar 

  106. Hughes, R. M. & Waters, M. L. Model systems for β-hairpins and β-sheets. Curr. Opin. Struct. Biol. 16, 514–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Patgiri, A., Jochim, A. L. & Arora, P. S. A hydrogen bond surrogate approach for stabilization of short peptide sequences in α-helical conformation. Acc. Chem. Res. 41, 1289–1300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schafmeister, C. E., Brown, Z. Z. & Gupta, S. Shape-programmable macromolecules. Acc. Chem. Res. 41, 1387–1398 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Modell, A. E., Blosser, S. L. & Arora, P. S. Systematic targeting of protein–protein interactions. Trends Pharmacol. Sci. 37, 702–713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Buckle, A. M., Schreiber, G. & Fersht, A. R. Protein–protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-Å resolution. Biochem. 33, 8878–8889 (1994).

    Article  CAS  Google Scholar 

  111. Sharp, K. A. A peek at ice binding by antifreeze proteins. Proc. Natl Acad. Sci. USA 108, 7281–7282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang, M. L. et al. Biomimetic peptoid oligomers as dual-action antifreeze agents. Proc. Natl Acad. Sci. USA 109, 19922–19927 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Beaver, J. E. & Waters, M. L. Molecular Recognition of Lys and Arg Methylation. Chem. Biol. 11, 643–653 (2016).

    CAS  Google Scholar 

  114. McNally, A., Prier, C. K. & MacMillan, D. W. C. Discovery of an α-amino C-H arylation reaction using the strategy of accelerated serendipity. Science 334, 1114–1117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W. & Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov. 15, 605–619 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Schiro, G. et al. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nat. Commun. 6, 6490 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Klibanov, A. M. Why are enzymes less active in organic solvents than in water? Trends Biotech. 15, 97–101 (1997).

    Article  CAS  Google Scholar 

  118. Hong, J., Gierasch, L. M. & Liu, Z. Its preferential interactions with biopolymers account for diverse observed effects of trehalose. Biophys. J. 109, 144–153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dervan, P., Doss, R. & Marques, M. Programmable DNA binding oligomers for control of transcription. Curr. Med. Chem. Anticancer Agents 5, 373–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Woo, S. & Rothemund, P. W. K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Davis, A. P. Supramolecular chemistry: sticking to sugars. Nature 464, 169–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Katyal, N. & Deep, S. Revisiting the conundrum of trehalose stabilization. Phys. Chem. Chem. Phys. 16, 26746–26761 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Boraston, A. B., Lammerts van Bueren, A., Ficko-Blean, E. & Abbott, D. W. Carbohydrate–protein interactions: carbohydrate-binding modules. 661–696 (2007).

  125. Clear, K. J. & Smith, B. D. in Synthetic Receptors for Biomolecules: Design Principles and Applications (ed Smith, B. D.) 404–436 (Royal Society of Chemistry, 2015).

    Book  Google Scholar 

  126. Schramm, M. P., Hooley, R. J. & Rebek, J., Jr. Guest recognition with micelle-bound cavitands. J. Am. Chem. Soc. 129, 9773–9779 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere gratitude to the National Science Foundation for its generous support (NSF CHE-1450865) of a workshop that brought together the physical and supramolecular communities to discuss aqueous supramolecular chemistry. The authors also thank the participants of the workshop for their commitment to its success: H. Allen, E. Anslyn, P. Arora, H. Ashbaugh, D. Ben-Amotz, S. Bradforth, M. Cloninger, M. Duncan, A. Fuller, M. Gunner, M. Hillyer, R. Hooley, L. Isaacs, J. Jayawickramarajah, D. Johnson, M. Levine, N. Levinger, Y. Liu, P. Petersen, V. Pierre, L. Pratt, B. Rogers, J. Sessler, K. Sharp, B. Smith, D. Tobias, A. Urbach, B. Wang, M. Waters, S. Xantheas, C. Zanette and S. Zimmerman.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the initial grant application, the running of the workshop, and writing the manuscript.

Corresponding authors

Correspondence to Paul S. Cremer, Amar H. Flood, Bruce C. Gibb or David L. Mobley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cremer, P., Flood, A., Gibb, B. et al. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry. Nature Chem 10, 8–16 (2018). https://doi.org/10.1038/nchem.2894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing