Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity

Abstract

Understanding the behaviour of flexible metal–organic frameworks (MOFs)—porous crystalline materials that undergo a structural change upon exposure to an external stimulus—underpins their design as responsive materials for specific applications, such as gas separation, molecular sensing, catalysis and drug delivery. Reversible transformations of a MOF between open- and closed-pore forms—a behaviour known as ‘breathing’—typically occur through well-defined crystallographic transitions. By contrast, continuous breathing is rare, and detailed characterization has remained very limited. Here we report a continuous-breathing mechanism that was studied by single-crystal diffraction in a MOF with a diamondoid network, (Me2NH2)[In(ABDC)2] (ABDC, 2-aminobenzene-1,4-dicarboxylate). Desolvation of the MOF in two different solvents leads to two polymorphic activated forms with very different pore openings, markedly different gas-adsorption capacities and different CO2 versus CH4 selectivities. Partial desolvation introduces a gating pressure associated with CO2 adsorption, which shows that the framework can also undergo a combination of stepped and continuous breathing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of SHF-61.
Figure 2: Gas adsorption by SHF-61.
Figure 3: Continuous breathing of SHF-61 on desolvation, and comparison with other breathing MOFs.
Figure 4: Continuous breathing of SHF-61 on resolvation.
Figure 5: Gated CO2 uptake by partially solvated SHF-61-DMF.
Figure 6: Proposed role of guest–framework interactions in the solvent-dependent continuous-breathing properties of SHF-61.

Similar content being viewed by others

References

  1. Mueller, U. et al. Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).

    Article  CAS  Google Scholar 

  2. Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    Article  CAS  Google Scholar 

  3. Horcajada, P. et al. Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).

    Article  CAS  Google Scholar 

  4. Yoon, M., Srirambalaji, R. & Kim, K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012).

    Article  CAS  Google Scholar 

  5. Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  CAS  Google Scholar 

  6. Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012).

    Article  CAS  Google Scholar 

  7. Carrington, E. C., Vitórica-Yrezábal, I. J. & Brammer, L . Crystallographic studies of gas sorption in metal–organic frameworks. Acta Crystallogr. B 70, 404–422 (2014).

    Article  CAS  Google Scholar 

  8. Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    Article  CAS  Google Scholar 

  9. Fletcher, A. J., Thomas, K. M. & Rosseinsky, M. J. Flexibility in metal–organic framework materials: impact on sorption properties. J. Solid State Chem. 178, 2491–2510 (2005).

    Article  CAS  Google Scholar 

  10. Horcajada, P. et al. Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).

    Article  CAS  Google Scholar 

  11. Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  Google Scholar 

  12. Murdock, C. R., Hughes, B. C., Lu, Z. & Jenkins, D. M. Approaches for synthesizing breathing MOFs by exploiting dimensional rigidity. Coord. Chem. Rev. 258–259, 119–136 (2014).

    Article  Google Scholar 

  13. Coudert, F.-X., Boutin, A., Jeffroy, M., Mellot-Draznieks, C. & Fuchs, A. H. Thermodynamic methods and models to study flexible metal–organic frameworks. ChemPhysChem 12, 247–258 (2011).

    Article  CAS  Google Scholar 

  14. Serre, C. et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HOC−C6H4−CO2H}x·(H2O)y . J. Am. Chem. Soc. 124, 13519–13526 (2002).

    Article  CAS  Google Scholar 

  15. Serre, C. et al. An explanation for the very large breathing effect of a metal–organic framework during CO2 adsorption. Adv. Mater. 19, 2246–2251 (2007).

    Article  CAS  Google Scholar 

  16. Xiao, J. et al. Crystalline structural intermediates of a breathing metal–organic framework that functions as a luminescent sensor and gas reservoir. Chem. Eur. J. 19, 1891–1895 (2013).

    Article  CAS  Google Scholar 

  17. Coudert, F.-X., Mellot-Draznieks, C., Fuchs, A. H. & Boutin, A. Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal–organic frameworks. J. Am. Chem. Soc. 131, 11329–11331 (2009).

    Article  CAS  Google Scholar 

  18. Salles, F. et al. Multistep N2 breathing in the metal−organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 132, 13782–13788 (2010).

    Article  CAS  Google Scholar 

  19. Yang, W. et al. Selective CO2 uptake and inverse CO2/C2H2 selectivity in a dynamic bifunctional metal–organic framework. Chem. Sci. 3, 2993–2999 (2012).

    Article  CAS  Google Scholar 

  20. Bourrelly, S. et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 127, 13519–13521 (2005).

    Article  CAS  Google Scholar 

  21. Grosch, J. S. & Paesani, F. Molecular-level characterization of the breathing behavior of the jungle-gym-type DMOF-1 metal–organic framework. J. Am. Chem. Soc. 134, 4207–4215 (2012).

    Article  CAS  Google Scholar 

  22. Wang, Z. & Cohen, S. M. Modulating metal−organic frameworks to breathe: a postsynthetic covalent modification approach. J. Am. Chem. Soc. 131, 16675–16677 (2009).

    Article  CAS  Google Scholar 

  23. Henke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. Directing the breathing behavior of pillared-layered metal–organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. J. Am. Chem. Soc. 134, 9464–9474 (2012).

    Article  CAS  Google Scholar 

  24. Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2016).

    Article  Google Scholar 

  25. Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).

    Article  CAS  Google Scholar 

  26. Llewellyn, P. L., Bourrelly, S., Serre, C., Filinchuk, Y. & Férey, G. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew. Chem. Int. Ed. 45, 7751–7754 (2006).

    Google Scholar 

  27. Millange, F . et al. Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem. Commun. 4732–4734 (2008).

  28. Mellot-Draznieks, C., Serre, C., Surblé, S., Audebrand, N. & Férey, G. Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. J. Am. Chem. Soc. 127, 16273–16278 (2005).

    Article  CAS  Google Scholar 

  29. Serre, C. et al. Role of solvent–host interactions that lead to very large swelling of hybrid frameworks. Science. 315, 1828–1831 (2007).

    Article  CAS  Google Scholar 

  30. Yang, C., Wang, X. & Omary, M. A. Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal–organic framework. Angew. Chem. Int. Ed. 48, 2500–2505 (2009).

    Google Scholar 

  31. Seo, J., Matsuda, R., Sakamoto, H., Bonneau, C. & Kitagawa, S. A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. J. Am. Chem. Soc. 131, 12792–12800 (2009).

    Article  CAS  Google Scholar 

  32. Seo, J., Bonneau, C., Matsuda, R., Takata, M. & Kitagawa, S. Soft secondary building unit: dynamic bond rearrangement on multinuclear core of porous coordination polymers in gas media. J. Am. Chem. Soc. 133, 9005–9013 (2011).

    Article  CAS  Google Scholar 

  33. Yuan, B. et al. A microporous, moisture-stable, and amine-functionalized metal–organic framework for highly selective separation of CO2 from CH4 . Chem. Commun. 48, 1135–1137 (2012).

    Article  CAS  Google Scholar 

  34. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  35. Mowat, J. P. S. et al. Structural chemistry, monoclinic-to-orthorhombic phase transition, and CO2 adsorption behavior of the small pore scandium terephthalate, Sc2(O2CC6H4CO2)3, and its nitro- and amino-functionalized derivatives. Inorg. Chem. 50, 10844–10858 (2011).

    Article  CAS  Google Scholar 

  36. Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 1051–1069 (2015).

    Article  CAS  Google Scholar 

  37. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918).

    Article  CAS  Google Scholar 

  38. Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).

    Article  CAS  Google Scholar 

  39. Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14, 357–361 (1981).

    Article  CAS  Google Scholar 

  40. Llewellyn, P. L. et al. Complex adsorption of short linear alkanes in the flexible metal–organic framework MIL-53(Fe). J. Am. Chem. Soc. 131, 13002–13008 (2009).

    Article  CAS  Google Scholar 

  41. Senkovska, I. et al. New highly porous aluminium based metal–organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalenedicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyldicarboxylate). Microporous Mesoporous Mater. 122, 93–98 (2009).

    Article  CAS  Google Scholar 

  42. Li, X. et al. The dynamic response of a flexible indium based metal–organic framework to gas sorption. Chem. Commun. 52, 2277–2280 (2016).

    Article  CAS  Google Scholar 

  43. Yang, S. et al. A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nat. Mater. 11, 710–716 (2012).

    Article  CAS  Google Scholar 

  44. Sarkisov, L., Martin, R. L., Haranczyk, M. & Smit, B. On the flexibility of metal–organic frameworks. J. Am. Chem. Soc. 136, 2228–2231 (2014).

    Article  CAS  Google Scholar 

  45. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 48, 3–10 (2015).

    Google Scholar 

  46. Blessing, R. H. An empirical correction for absorption anisotropy. Acta Crystallogr. A 51, 33–38 (1995).

    Article  Google Scholar 

  47. Nowell, H., Barnett, S. A., Christensen, K. E., Teat, S. J. & Allan, D. R. I19, the small-molecule single-crystal diffraction beamline at diamond light source. J. Synchrotron Radiat. 19, 435–441 (2012).

    Article  CAS  Google Scholar 

  48. Thompson, S. P. et al. Fast X-ray powder diffraction on I11 at Diamond. J. Synchrotron Radiat. 18, 637–648 (2011).

    Article  CAS  Google Scholar 

  49. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Engineering and Physical Sciences Research Council for funding of the E-Futures Doctoral Training Centre (grant EP/G037477/1) and a Doctoral Prize fellowship for E.J.C. We thank Diamond Light Source for beam time at beamlines I19 and I11.

Author information

Authors and Affiliations

Authors

Contributions

L.B. and E.J.C. conceived the project. E.J.C. carried out the syntheses and analysis of single-crystal and powder X-ray diffraction data. C.A.M. and A.J.F. conducted gravimetric and volumetric gas-adsorption measurements and analyses. M.W. and S.P.T. provided the experimental set-ups and support for the in situ synchrotron crystallographic measurements and data analysis. L.B. was responsible for the overall direction of the project. L.B. and E.J.C. prepared the manuscript and all of the other authors contributed to its discussion.

Corresponding author

Correspondence to Lee Brammer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3082 kb)

Supplementary information

Crystallographic data for compound A1. (CIF 1343 kb)

Supplementary information

Crystallographic data for compound A2. (CIF 950 kb)

Supplementary information

Crystallographic data for compound A3. (CIF 1570 kb)

Supplementary information

Crystallographic data for compound C1. (CIF 1262 kb)

Supplementary information

Crystallographic data for compound C2. (CIF 859 kb)

Supplementary information

Crystallographic data for compound C3. (CIF 623 kb)

Supplementary information

Crystallographic data for compound C4. (CIF 838 kb)

Supplementary information

Crystallographic data for compound C5. (CIF 658 kb)

Supplementary information

Crystallographic data for compound C6. (CIF 656 kb)

Supplementary information

Crystallographic data for compound C7. (CIF 692 kb)

Supplementary information

Crystallographic data for compound D1.6. (CIF 474 kb)

Supplementary information

Crystallographic data for compound D2.2. (CIF 467 kb)

Supplementary information

Crystallographic data for compound F1. (CIF 569 kb)

Supplementary information

Crystallographic data for compound F2. (CIF 483 kb)

Supplementary information

Crystallographic data for compound F3. (CIF 516 kb)

Supplementary information

Crystallographic data for compound N1.1. (CIF 942 kb)

Supplementary information

Crystallographic data for compound N1.2. (CIF 521 kb)

Supplementary information

Crystallographic data for compound N1.4. (CIF 625 kb)

Supplementary information

Crystallographic data for compound N1.5. (CIF 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrington, E., McAnally, C., Fletcher, A. et al. Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nature Chem 9, 882–889 (2017). https://doi.org/10.1038/nchem.2747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing