Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling quantum-beating signals in 2D electronic spectra by packing synthetic heterodimers on single-walled carbon nanotubes

Abstract

In multidimensional spectroscopy, dynamics of coherences between excited states report on the interactions between electronic states and their environment. The prolonged coherence lifetimes revealed through beating signals in the spectra of some systems may result from vibronic coupling between nearly degenerate excited states, and recent observations confirm the existence of such coupling in both model systems and photosynthetic complexes. Understanding the origin of beating signals in the spectra of photosynthetic complexes has been given considerable attention; however, strategies to generate them in artificial systems that would allow us to test the hypotheses in detail are still lacking. Here we demonstrate control over the presence of quantum-beating signals by packing structurally flexible synthetic heterodimers on single-walled carbon nanotubes, and thereby restrict the motions of chromophores. Using two-dimensional electronic spectroscopy, we find that both limiting the relative rotation of chromophores and tuning the energy difference between the two electronic transitions in the dimer to match a vibrational mode of the lower-energy monomer are necessary to enhance the observed quantum-beating signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic routes and molecular structures of fluorescein heterodimers.
Figure 2: 2D electronic spectra showing coherent dynamics of fluorescein heterodimers in solution.
Figure 3: Power spectra of waiting time (T) dynamics of heterodimers in solution and on SWNTs.
Figure 4: 2D frequency beating maps of D24 with (left) and without (right) the SWNT environment at 487 cm−1.

Similar content being viewed by others

References

  1. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    Article  CAS  Google Scholar 

  2. Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

    Article  CAS  Google Scholar 

  3. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    Article  CAS  Google Scholar 

  4. Cho, M., Vaswani, H. M., Brixner, T., Stenger, J. & Fleming, G. R. Exciton analysis in 2D electronic spectroscopy. J. Phys. Chem. B 109, 10542–10556 (2005).

    Article  CAS  Google Scholar 

  5. Cowan, M. L., Ogilvie, J. P. & Miller, R. J. D. Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem. Phys. Lett. 386, 184–189 (2004).

    Article  CAS  Google Scholar 

  6. Brixner, T., Mančal, T., Stiopkin, I. V. & Fleming, G. R. Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121, 4221–4236 (2004).

    Article  CAS  Google Scholar 

  7. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).

    Google Scholar 

  8. Schlau-Cohen, G. S. et al. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem. 4, 389–395 (2012).

    Article  CAS  Google Scholar 

  9. Fuller, F. D. et al. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014).

    Article  CAS  Google Scholar 

  10. Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014).

    Article  CAS  Google Scholar 

  11. Hayes, D., Griffin, G. B. & Engel, G. S. Engineering coherence among excited states in synthetic heterodimer systems. Science 340, 1431–1434 (2013).

    Article  CAS  Google Scholar 

  12. Halpin, A. et al. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6, 196–201 (2014).

    Article  CAS  Google Scholar 

  13. Collini, E. & Scholes, G. D. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369–373 (2009).

    Article  CAS  Google Scholar 

  14. Milota, F. et al. Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates. J. Phys. Chem. A 117, 6007–6014 (2013).

    Article  CAS  Google Scholar 

  15. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  Google Scholar 

  16. Chin, A. W. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9, 113–118 (2013).

    Article  CAS  Google Scholar 

  17. Christensson, N. et al. High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures. J. Phys. Chem. B 115, 5383–5391 (2011).

    Article  CAS  Google Scholar 

  18. Turner, D. B., Wilk, K. E., Curmi, P. M. G. & Scholes, G. D. Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 2, 1904–1911 (2011).

    Article  CAS  Google Scholar 

  19. Butkus, V., Zigmantas, D., Valkunas, L. & Abramavicius, D. Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).

    Article  CAS  Google Scholar 

  20. Chin, A. W., Huelga, S. F. & Plenio, M. B. Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences. Phil. Trans. R. Soc. Lond. A 370, 3638–3657 (2012).

    Article  CAS  Google Scholar 

  21. Tiwari, V., Peters, W. K. & Jonas, D. M. Energy transfer: vibronic coherence unveiled. Nat. Chem. 6, 173–175 (2014).

    Article  CAS  Google Scholar 

  22. Chenu, A., Christensson, N., Kauffmann, H. F. & Mančal, T. Enhancement of vibronic and ground-state vibrational coherences in 2D spectra of photosynthetic complexes. Sci. Rep. 3, 2029 (2013).

    Article  Google Scholar 

  23. Lim, J. et al. Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nat. Commun. 6, 7755 (2015).

    Article  Google Scholar 

  24. Singh, V. P. et al. Towards quantification of vibronic coupling in photosynthetic antenna complexes. J. Chem. Phys. 142, 212446 (2015).

    Article  CAS  Google Scholar 

  25. Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).

    Book  Google Scholar 

  26. Van Amerongen, H. Photosynthetic Excitons (World Scientific, 2000).

    Book  Google Scholar 

  27. Bixner, O. et al. Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy. J. Chem. Phys. 136, 204503 (2012).

    Article  Google Scholar 

  28. Prall, B. S., Parkinson, D. Y., Ishikawa, N. & Fleming, G. R. Anti-correlated spectral motion in bisphthalocyanines: evidence for vibrational modulation of electronic mixing. J. Phys. Chem. A 109, 10870–10879 (2005).

    Article  CAS  Google Scholar 

  29. Jumper, C. C. et al. Intramolecular radiationless transitions dominate exciton relaxation dynamics. Chem. Phys. Lett. 599, 23–33 (2014).

    Article  CAS  Google Scholar 

  30. Cho, S. et al. Coherence in metal−metal-to-ligand-charge-transfer excited states of a dimetallic complex investigated by ultrafast transient absorption anisotropy. J. Phys. Chem. A 115, 3990–3996 (2011).

    Article  CAS  Google Scholar 

  31. Sparano, B. A., Shahi, S. P. & Koide, K. Effect of binding and conformation on fluorescence quenching in new 2′,7′-dichlorofluorescein derivatives. Org. Lett. 6, 1947–1949 (2004).

    Article  CAS  Google Scholar 

  32. Cheng, Y.-C. & Fleming, G. R. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60, 241–262 (2009).

    Article  CAS  Google Scholar 

  33. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    Article  CAS  Google Scholar 

  34. Cheng, Y.-C., Engel, G. S. & Fleming, G. R. Elucidation of population and coherence dynamics using cross-peaks in two-dimensional electronic spectroscopy. Chem. Phys. 341, 285–295 (2007).

    Article  CAS  Google Scholar 

  35. Hybl, J. D., Albrecht Ferro, A. & Jonas, D. M. Two-dimensional Fourier transform electronic spectroscopy. J. Chem. Phys. 115, 6606–6622 (2001).

    Article  CAS  Google Scholar 

  36. McClure, S. D., Turner, D. B., Arpin, P. C., Mirkovic, T. & Scholes, G. D. Coherent oscillations in the PC577 cryptophyte antenna occur in the excited electronic state. J. Phys. Chem. B 118, 1296–1308 (2014).

    Article  CAS  Google Scholar 

  37. Turner, D. B. et al. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).

    Article  CAS  Google Scholar 

  38. Womick, J. M. & Moran, A. M. Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin. J. Phys. Chem. B 113, 15747–15759 (2009).

    Article  CAS  Google Scholar 

  39. Lozovoy, V. V., Pastirk, I. & Dantus, M. Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation. Opt. Lett. 29, 775–777 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank P. Dahlberg for useful discussions. L.W., G.B.G., A.Z. and G.S.E. thank the Defense Threat Reduction Agency (Grant No. HDTRA1-10-0091), Air Force Office of Scientific Research (Grant No. FA9550-14-1-0367), Defense Advanced Research Projects Agency QuBE (Grant No. N66001-10-1-4060), National Science Foundation (NSF) MRSEC Program (Grant No. DMR 14-20709), Vannevar Bush Fellowship (ONR N00014-16-1-2513), the Alfred P. Sloan Foundation and the Camille and Henry Dreyfus Foundation for support. R.F.J. and F.Z. acknowledge support from the NSF (Grant Nos. CHE-0911180 and CHE-1048528).

Author information

Authors and Affiliations

Authors

Contributions

L.W., G.B.G., A.Z., F.Z. and G.S.E. designed the experiment. L.W., A.Z. and F.Z. performed the synthesis and characterization. L.W. and G.B.G. performed the measurements. L.W. and N.E.W. analysed the data. L.W., G.B.G. and G.S.E. wrote the manuscript, with input from all authors. G.S.E. and R.F.J. supervised the project.

Corresponding author

Correspondence to Gregory S. Engel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 24315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Griffin, G., Zhang, A. et al. Controlling quantum-beating signals in 2D electronic spectra by packing synthetic heterodimers on single-walled carbon nanotubes. Nature Chem 9, 219–225 (2017). https://doi.org/10.1038/nchem.2729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing