Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium

Abstract

Uncultivated bacteria represent a massive resource of new enzymes and bioactive metabolites, but such bacteria remain functionally enigmatic. Polytheonamides are potent peptide cytotoxins produced by uncultivated bacteria that exist as symbionts in a marine sponge. Outside glycobiology, polytheonamides represent the most heavily post-translationally modified biomolecules that are derived from amino acids. The biosynthesis of polytheonamides involves up to 50 site-specific modifications to create a membrane-spanning β-helical structure. Here, we provide functional evidence that only seven enzymes are necessary for this process. They iteratively catalyse epimerization, methylation and hydroxylation of diverse amino acids. To reconstitute C-methylation, we employed the rarely used heterologous host Rhizobium leguminosarum to invoke the activities of two cobalamin-dependent C-methyltransferases. We observed 44 of the modifications to systematically unravel the biosynthesis of one of the most densely modified and metabolically obscure ribosome-derived molecules found in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polytheonamide structures and genetic locus.
Figure 2: Proteolytic results for PTM identification and summary of PoyA mutational analysis.
Figure 3: N-methylation during polytheonamide biosynthesis.
Figure 4: Biosynthetic timing of N-methylation with respect to epimerization.
Figure 5: PoyB- and PoyC-catalysed C-methylation in Rlv3841.
Figure 6: Overview of PTMs observed in polytheonamide biosynthesis.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ryšlavá, H., Doubnerová, V., Kavan, D. & Vaněk, O. Effect of posttranslational modifications on enzyme function and assembly. J. Proteomics 92, 80–109 (2013).

    Article  Google Scholar 

  2. Pisithkul, T., Patel, N. M. & Amador-Noguez, D. Post-translational modifications as key regulators of bacterial metabolic fluxes. Curr. Opin. Microbiol. 24, 29–37 (2015).

    Article  CAS  Google Scholar 

  3. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  Google Scholar 

  4. Donia, M. S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).

    Article  CAS  Google Scholar 

  5. Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    Article  CAS  Google Scholar 

  6. Hamada, T., Sugawara, T., Matsunaga, S. & Fusetani, N. Polytheonamides, unprecedented highly cytotoxic polypeptides, from the marine sponge Theonella swinhoei: 1. Isolation and component amino acids. Tetrahedron Lett. 35, 719–720 (1994).

    Article  CAS  Google Scholar 

  7. Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    Article  CAS  Google Scholar 

  8. Demain, A. L. Antibiotics: natural products essential to human health. Med. Res. Rev. 29, 821–842 (2009).

    Article  CAS  Google Scholar 

  9. Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013).

    Article  CAS  Google Scholar 

  10. Shinohara, N., Itoh, H., Matsuoka, S. & Inoue, M. Selective modification of the N-terminal structure of polytheonamide B significantly changes its cytotoxicity and activity as an ion channel. ChemMedChem 7, 1770–1773 (2012).

    Article  CAS  Google Scholar 

  11. Chatterjee, C., Paul, M., Xie, L. & van der Donk, W. A. Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105, 633–684 (2005).

    Article  CAS  Google Scholar 

  12. Tang, W. et al. Applications of the class II lanthipeptide protease LicP for sequence-specific, traceless peptide bond cleavage. Chem. Sci. 6, 6270–6279 (2015).

    Article  CAS  Google Scholar 

  13. Rawlings, N. D. & Barrett, A. J. in Handbook of Proteolytic Enzymes 308, 1743–1773 (Elsevier, 2013).

    Book  Google Scholar 

  14. Völler, G. H., Krawczyk, B., Ensle, P. & Süssmuth, R. D. Involvement and unusual substrate specificity of a prolyl oligopeptidase in class III lanthipeptide maturation. J. Am. Chem. Soc. 135, 7426–7429 (2013).

    Article  Google Scholar 

  15. Ortega, M. A. et al. Substrate specificity of the lanthipeptide peptidase ElxP and the oxidoreductase ElxO. ACS Chem. Biol. 9, 1718–1725 (2014).

    Article  CAS  Google Scholar 

  16. Siezen, R. J. & Leunissen, J. A. M. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 6, 501–523 (2008).

    Article  Google Scholar 

  17. Brömme, D., Peters, K., Fink, S. & Fittkau, S. Enzyme–substrate interactions in the hydrolysis of peptide substrates by thermitase, subtilisin BPN′, and proteinase K. Arch. Biochem. Biophys. 244, 439–446 (1986).

    Article  Google Scholar 

  18. Morinaka, B. I. et al. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products. Angew. Chem. Int. Ed. 53, 8503–8507 (2014).

    Article  CAS  Google Scholar 

  19. Bode, H. B. et al. Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. Chem. Eur. J. 18, 2342–2348 (2012).

    Article  CAS  Google Scholar 

  20. Cox, J. & Mann, M. Maxquant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  21. Krawczyk, B., Ensle, P., Müller, W. M. & Süssmuth, R. D. Deuterium labeled peptides give insights into the directionality of class III lantibiotic synthetase LabKC. J. Am. Chem. Soc. 134, 9922–9925 (2012).

    Article  CAS  Google Scholar 

  22. Melby, J. O., Dunbar, K. L., Trinh, N. Q. & Mitchell, D. A. Selectivity, directionality, and promiscuity in peptide processing from a Bacillus sp. Al Hakam cyclodehydratase. J. Am. Chem. Soc. 134, 5309–5316 (2012).

    Article  CAS  Google Scholar 

  23. Thibodeaux, C. J., Wagoner, J., Yu, Y. & van der Donk, W. A. Leader peptide establishes dehydration order, promotes efficiency, and ensures fidelity during lacticin 481 biosynthesis. J. Am. Chem. Soc. 138, 6436–6444 (2016).

    Article  CAS  Google Scholar 

  24. Skaugen, M. et al. In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide. J. Biol. Chem. 269, 27183–27185 (1994).

    CAS  PubMed  Google Scholar 

  25. Pauwels, K., Van Molle, I., Tommassen, J. & Van Gelder, P. Chaperoning anfinsen: the steric foldases. Mol. Microbiol. 64, 917–922 (2007).

    Article  CAS  Google Scholar 

  26. Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J. & Whitelaw, M. L. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295, 858–861 (2002).

    Article  CAS  Google Scholar 

  27. Yang, M. et al. Factor-inhibiting hypoxia-inducible factor (FIH) catalyses the post-translational hydroxylation of histidinyl residues within ankyrin repeat domains. FEBS J. 278, 1086–1097 (2011).

    Article  CAS  Google Scholar 

  28. Zhang, Q., van der Donk, W. A. & Liu, W. Radical-mediated enzymatic methylation: a tale of two SAMs. Acc. Chem. Res. 45, 555–564 (2012).

    Article  Google Scholar 

  29. Werner, W. J. et al. In vitro phosphinate methylation by PhpK from Kitasatospora phosalacinea. Biochemistry 50, 8986–8988 (2011).

    Article  CAS  Google Scholar 

  30. Marous, D. R. et al. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis. Proc. Natl. Acad. Sci. USA 112, 10354–10358 (2015).

    Article  CAS  Google Scholar 

  31. Benjdia, A. et al. The thiostrepton A tryptophan methyltransferase TsrM catalyses a cob(II)alamin-dependent methyl transfer reaction. Nat. Commun. 6, 8377 (2015).

    Article  CAS  Google Scholar 

  32. Kamigiri, K., Hidaka, T., Imai, S., Murakami, T. & Seto, H. Studies on the biosynthesis of bialaphos (SF-1293) 12. C-P bond formation mechanism of bialaphos: discovery of a P-methylation enzyme. J. Antibiot. (Tokyo) 45, 781–787 (1992).

    Article  CAS  Google Scholar 

  33. Kim, S. Y. et al. Different biosynthetic pathways to fosfomycin in Pseudomonas syringae and Streptomyces species. Antimicrob. Agents Chemother. 56, 4175–4183 (2012).

    Article  CAS  Google Scholar 

  34. van Rhijn, P. & Vanderleyden, J. The rhizobium–plant symbiosis. Microbiol. Rev. 59, 124–142 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Burton, M. O. & Lochhead, A. G. Production of vitamin B12 by Rhizobium species. Can. J. Bot. 30, 521–524 (1952).

    Article  CAS  Google Scholar 

  36. Tett, A. J., Rudder, S. J., Bourdès, A., Karunakaran, R. & Poole, P. S. Regulatable vectors for environmental gene expression in alphaproteobacteria. Appl. Environ. Microbiol. 78, 7137–7140 (2012).

    Article  CAS  Google Scholar 

  37. Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H. & Walsh, C. T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5, 631–645 (1998).

    Article  CAS  Google Scholar 

  38. Koehnke, J. et al. Structural analysis of leader peptide binding enables leader-free cyanobactin processing. Nat. Chem. Biol. 11, 558–563 (2015).

    Article  CAS  Google Scholar 

  39. Ortega, M. A. et al. Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. Nature 517, 509–512 (2014).

    Article  Google Scholar 

  40. Burkhart, B. J., Hudson, G. A., Dunbar, K. L. & Mitchell, D. A. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol. 11, 564–570 (2015).

    Article  CAS  Google Scholar 

  41. Shieh, Y.-W. et al. Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science 350, 678–680 (2015).

    Article  CAS  Google Scholar 

  42. Lothrop, A. P., Torres, M. P. & Fuchs, S. M. Deciphering post-translational modification codes. FEBS Lett. 587, 1247–1257 (2013).

    Article  CAS  Google Scholar 

  43. Morioka, T., Loik, N. D., Hipolito, C. J., Goto, Y. & Suga, H. Selection-based discovery of macrocyclic peptides for the next generation therapeutics. Curr. Opin. Chem. Biol. 26, 34–41 (2015).

    Article  CAS  Google Scholar 

  44. Masepohl, B. et al. Functional analysis of the cysteine motifs in the ferredoxin-like protein FdxN of Rhizobium meliloti involved in symbiotic nitrogen fixation. Mol. Gen. Genet. 233, 33–41 (1992).

    Article  CAS  Google Scholar 

  45. Hamada, T. et al. Solution structure of polytheonamide B, a highly cytotoxic nonribosomal polypeptide from marine sponge. J. Am. Chem. Soc. 132, 12941–12945 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H.-M. Fischer and R. Ledermann for their rhizobia expertise and strains, P. Poole for Rlv3841, M. Frank and L. Arrigo for assistance with PoyI experiments, S. Matsunaga for a T. swinhoei sample, J. LaClair for discussions, and A. Vagstad and H.-M. Fischer for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation (31003A_146992 and 205321_165695), the EU (SYNPEPTIDE) and the DFG (PI 430/9-1) (J.P.), the Human Frontier Science Program (M.F.F.), the Studienstiftung des deutschen Volkes (M.J.H.) and the Humboldt Foundation (B.I.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.F.F., M.H. and A.B. performed all E. coli experiments. M.F.F. designed and performed all rhizobia experiments. M.F.F., M.H., A.B. and B.I.M. performed LC-MS experiments. M.F.F., M.H. and A.B. analysed MS data. J.P., M.F.F. and M.H. designed the studies and wrote the manuscript. All authors discussed the results and made comments on the manuscript.

Corresponding authors

Correspondence to Michael F. Freeman or Jörn Piel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11732 kb)

Supplementary information

Supplementary data 1 and 2 (ZIP 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freeman, M., Helf, M., Bhushan, A. et al. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nature Chem 9, 387–395 (2017). https://doi.org/10.1038/nchem.2666

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2666

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing