Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversal of Hückel (anti)aromaticity in the lowest triplet states of hexaphyrins and spectroscopic evidence for Baird's rule

Abstract

The reversal of (anti)aromaticity in a molecule's triplet excited state compared with its closed-shell singlet ground state is known as Baird's rule and has attracted the interest of synthetic, physical organic chemists and theorists because of the potential to modulate the fundamental properties of highly conjugated molecules. Here we show that two closely related bis-rhodium hexaphyrins (R26H and R28H) containing [26] and [28] π-electron peripheries, respectively, exhibit properties consistent with Baird's rule. In the ground state, R26H exhibits a sharp Soret-like band and distinct Q-like bands characteristic of an aromatic porphyrinoid, whereas R28H exhibits a broad absorption spectrum without Q-like bands, which is typical of an antiaromatic porphyrinoid. In contrast, the T–T absorption of R26H is broad, weak and featureless, whereas that of R28H displays an intense and sharp Soret-like band. These spectral signatures, in combination with quantum chemical calculations, are in line with qualitative expectations based on Baird's rule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TA contour maps and ground-state absorption and decay-associated TA spectra of R26H and R28H.
Figure 2: Ground- and excited-state absorption spectra of R26H and R28H as a function of extinction coefficients.
Figure 3: Isosurfaces and current density vectors for R26H and R28H.

Similar content being viewed by others

References

  1. Minkin, V. I., Glukhovtsev, M. N. & Simkin, B. Y. Aromaticity and Antiaromaticity: Electronic and Structural Aspects (Wiley, 1994).

    Google Scholar 

  2. Cyrański, M. K. Energetic aspects of cyclic π-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. Chem. Rev. 105, 3773–3811 (2005).

    Article  Google Scholar 

  3. Hückel, E. Quantentheoretische Beiträge zum Benzolproblem. Z. Phys. 70, 204–286 (1931).

    Article  Google Scholar 

  4. Rzepa, H. S. Möbius aromaticity and delocalization. Chem. Rev. 105, 3697–3715 (2005).

    Article  CAS  Google Scholar 

  5. Baird, N. C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J. Am. Chem. Soc. 94, 4941–4948 (1972).

    Article  CAS  Google Scholar 

  6. Ottosson, H. Organic photochemistry: exciting excited-state aromaticity. Nature Chem. 4, 969–971 (2012).

    Article  CAS  Google Scholar 

  7. Rosenberg, M., Dahlstrand, C., Kilså, K. & Ottosson, H. Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. Chem. Rev. 114, 5379–5425 (2014).

    Article  CAS  Google Scholar 

  8. Aihara, J.-i. Aromaticity-based theory of pericyclic reactions. Bull. Chem. Soc. Jpn 51, 1788–1792 (1978).

    Article  CAS  Google Scholar 

  9. Ilić, P., Sinković, B. & Trinajstić, N. Topological resonance energies of conjugated structures. Isr. J. Chem. 20, 258–269 (1980).

    Article  Google Scholar 

  10. Fratev, F., Monev, V. & Janoschek, R. Ab initio study of cyclobutadiene in excited states: optimized geometries, electronic transitions and aromaticities. Tetrahedron 38, 2929–2932 (1982).

    Article  CAS  Google Scholar 

  11. Gogonea, V., Schleyer, P. v. R. & Schreiner, P. R. Consequences of triplet aromaticity in 4nπ-electron annulenes: calculation of magnetic shieldings for open-shell species. Angew. Chem. Int. Ed. 37, 1945–1948 (1998).

    Article  CAS  Google Scholar 

  12. Zilberg, S. & Haas, Y. Two-state model of antiaromaticity: the low lying singlet states. J. Phys. Chem. A 102, 10843–10850 (1998).

    Article  CAS  Google Scholar 

  13. Krygowski, T. M. & Cyrański, M. K. Two sources of the decrease of aromaticity: bond length alternation and bond elongation. Part II. An analysis based on geometry of the singlet and triplet states of 4nπ annulenes: C4H4, C5H5+, C6H62+, C7H7, C8H8, C9H9+. Tetrahedron 55, 11143–11148 (1999).

    Article  CAS  Google Scholar 

  14. Fowler, P. W., Steiner, E. & Jennesken, L. W. Ring-current aromaticity in triplet states of 4nπ electron monocycles. Chem. Phys. Lett. 371, 719–723 (2003).

    Article  CAS  Google Scholar 

  15. Villaume, S., Fogarty, H. A. & Ottosson, H. Triplet-state aromaticity of 4nπ-electron monocycles: analysis of bifurcation in the π contribution to the electron localization function. ChemPhysChem 9, 257–264 (2008).

    Article  CAS  Google Scholar 

  16. Karadakov, P. B. Ground- and excited-state aromaticity and antiaromaticity in benzene and cyclobutadiene. J. Phys. Chem. A 112, 7303–7309 (2008).

    Article  CAS  Google Scholar 

  17. Karadakov, P. B. Aromaticity and antiaromaticity in the low-lying electronic states of cyclooctatetraene. J. Phys. Chem. A 112, 12707–12713 (2008).

    Article  CAS  Google Scholar 

  18. Feixas, F., Vandenbussche, J., Bultinck, P., Matito, E. & Solà, M. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds. Phys. Chem. Chem. Phys. 13, 20690–20703 (2011).

    Article  CAS  Google Scholar 

  19. Zhu, J., An, K. & Schleyer, P. v. R. Evaluation of triplet aromaticity by the isomerization stabilization energy. Org. Lett. 15, 2442–2445 (2013).

    Article  CAS  Google Scholar 

  20. An, K. & Zhu, J. Evaluation of triplet aromaticity by the indene–isoindene isomerization stabilization energy method. Eur. J. Org. Chem. 13, 2764–2769 (2014).

    Article  Google Scholar 

  21. Wan, P. & Krogh, E. Evidence for the generation of aromatic cationic systems in the excited state. Photochemical solvolysis of fluoren-9-ol. J. Chem. Soc. Chem. Commun. 1207–1208 (1985).

  22. McAuley, I., Krogh, E. & Wan, P. Carbanion intermediates in the photodecarboxylation of benzannelated acetic acids in aqueous solution. J. Am. Chem. Soc. 110, 600–602 (1988).

    Article  CAS  Google Scholar 

  23. Shukla, D. & Wan, P. Evidence for a planar cyclically conjugated 8π system in the excited state: large Stokes shift observed for dibenz[b,f]oxepin fluorescence. J. Am. Chem. Soc. 115, 2990–2991 (1993).

    Article  CAS  Google Scholar 

  24. Wörner, H. J. & Merkt, F. Photoelectron spectroscopic study of the first singlet and triplet states of the cyclopentadienyl cation. Angew. Chem. Int. Ed. 45, 293–296 (2006).

    Article  Google Scholar 

  25. Möllerstedt, H., Piqueras, M. C., Crespo, R. & Ottosson, H. Fulvenes, fulvalenes, and azulene: are they aromatic chameleons?. J. Am. Chem. Soc. 126, 13938–13939 (2004).

    Article  Google Scholar 

  26. Ottosson, H. et al. Scope and limitations of Baird's theory on triplet state aromaticity: application to the tuning of singlet–triplet energy gaps in fulvenes. Chem. Eur. J. 13, 6998–7005 (2007).

    Article  CAS  Google Scholar 

  27. Rosenberg, M., Ottosson, H. & Kilså, K. Influence of excited state aromaticity in the lowest excited singlet states of fulvene derivatives. Phys. Chem. Chem. Phys. 13, 12912–12919 (2011).

    Article  CAS  Google Scholar 

  28. Jorner, K. et al. Impact of ground- and excited-state aromaticity on cyclopentadiene and silole excitation energies and excited-state polarities. Chem. Eur. J. 20, 9295–9303 (2014).

    Article  CAS  Google Scholar 

  29. Rath, H. et al. Bis-rhodium hexaphyrins: metalation of [28]hexaphyrin and a smooth Hückel aromatic–antiaromatic interconversion. Chem. Commun. 3762–3764 (2009).

  30. Stępień, M., Sprutta, N. & Latos-Grażyński, L. Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids. Angew. Chem. Int. Ed. 50, 4288–4340 (2011).

    Article  Google Scholar 

  31. Saito, S. & Osuka, A. expanded porphyrins: intriguing structures, electronic properties, and reactivities. Angew. Chem. Int. Ed. 50, 4342–4373 (2011).

    Article  CAS  Google Scholar 

  32. Shin, J.-Y. et al. Aromaticity and photophysical properties of various topology-controlled expanded porphyrins. Chem. Soc. Rev. 39, 2751–2767 (2010).

    Article  CAS  Google Scholar 

  33. Cho, S. et al. Defining spectroscopic features of heteroannulenic antiaromatic porphyrinoids. J. Phys. Chem. Lett. 1, 895–900 (2010).

    Article  CAS  Google Scholar 

  34. Kadish, K. M., Smith, K. M. & Guilard, R. Handbook of porphyrin science Vols 1–20 (World Scientific, 2010).

    Google Scholar 

  35. Ahn, T. K. et al. Comparative photophysics of [26]- and [28]Hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1). J. Am. Chem. Soc. 127, 12856–12861 (2005).

    Article  CAS  Google Scholar 

  36. Gouterman, M., Wagniere, G. H. & Snyder, L. C. Spectra of porphyrins: Part II. Four orbital model. J. Mol. Spectrosc. 11, 108–127 (1963).

    Article  CAS  Google Scholar 

  37. Schleyer, P. v. R., Maerker, C., Dransfeld, A., Jiao, H. & van Eikema Hommes, N. J. R. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317–6318 (1996).

    Article  CAS  Google Scholar 

  38. Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (acid), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).

    Article  CAS  Google Scholar 

  39. Bühl, M. et al. Helium and lithium NMR chemical shifts of endohedral fullerene compounds: an ab initio study. J. Am. Chem. Soc. 116, 6005–6006 (1994).

    Article  Google Scholar 

  40. Krygowski, T. M. & Cyrański, M. K. Structural aspects of aromaticity. Chem. Rev. 101, 1385–1419 (2001).

    Article  CAS  Google Scholar 

  41. Herges, R. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106, 4820–4842 (2006).

    Article  CAS  Google Scholar 

  42. Yoon, M.-C., Cho, S., Suzuki, M., Osuka, A. & Kim, D. Aromatic versus antiaromatic effect on photophysical properties of conformationally locked trans-vinylene-bridged hexaphyrins. J. Am. Chem. Soc. 131, 7360–7367 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work at Yonsei University was supported by the Samsung Science and Technology Foundation (Project No. SSTF-BA1402-10). The quantum calculations were performed using the supercomputing resources of the Korea Institute of Science and Technology Information (KISTI). The work at Kyoto University was supported financially by the Global Research Laboratory (GRL, 2013K1A1A2A0205183) Program funded by the Ministry of Education, Science and Technology (MEST) of Korea. The authors express their appreciation to R. Herges and J.L. Sessler for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.K. conceived and designed the experiments. Y.M.S., M.-C.Y. and J.M.L. performed the experiments. Y.M.S. and M.-C.Y. analysed the data. H.R., K.N. and A.O. contributed materials. Y.M.S., A.O. and D.K. co-wrote the paper. D.K. supervised the study.

Corresponding authors

Correspondence to Atsuhiro Osuka or Dongho Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, Y., Yoon, MC., Lim, J. et al. Reversal of Hückel (anti)aromaticity in the lowest triplet states of hexaphyrins and spectroscopic evidence for Baird's rule. Nature Chem 7, 418–422 (2015). https://doi.org/10.1038/nchem.2233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing