Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic, crystallographic, and computational studies on the catalytic, enantioselective sulfenofunctionalization of alkenes

Abstract

The stereocontrolled introduction of vicinal heteroatomic substituents into organic molecules is one of the most powerful ways of adding value and function. Although many methods exist for the introduction of oxygen- and nitrogen-containing substituents, the number of stereocontrolled methods for the introduction of sulfur-containing substituents pales by comparison. Previous reports from our laboratories have described sulfenofunctionalizations of alkenes that construct carbon–sulfur bonds vicinal to carbon–oxygen, carbon–nitrogen or carbon–carbon bonds with high levels of diastereospecificity and enantioselectivity. This process is enabled by the concept of Lewis-base activation of Lewis acids, which provides activation of Group 16 electrophiles. To provide a foundation for the expansion of substrate scope and improved selectivities, we have undertaken a comprehensive study of the catalytically active species. Insights gleaned from kinetic, crystallographic and computational methods have led to the introduction of a new family of sulfenylating agents that provide significantly enhanced selectivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lewis-base catalysed, enantioselective sulfenofunctionalization of unactivated alkenes.
Figure 2: Synthesis of catalytically active species (±)-5b and its X-ray crystal structure.
Figure 3: Proposed catalytic cycle of Lewis-base catalysed sulfenofunctionalization.
Figure 4: Calculations of transition states leading to formation of the thiiranium ion.

Similar content being viewed by others

References

  1. Metzner, P. & Thuillier, A. Sulfur Reagents in Organic Synthesis (Academic Press, 1994).

    Google Scholar 

  2. Page, P. (ed.) Organosulfur Chemistry: Synthetic Aspects (Academic Press, 1995).

    Google Scholar 

  3. Prinsep, M. R. Sulfur-containing natural products from marine invertebrates. Stud. Nat. Prod. Chem. 28, 617–751 (2003).

    Article  CAS  Google Scholar 

  4. de la Mare, P. B. D. & Bolton, R. (eds) in Electrophilic Additions to Unsaturated Systems 2nd edn, Vol. 9, 198–246 (Elsevier, 1982).

    Google Scholar 

  5. Smit, W. A., Zefirov, N. S., Bodrikov, I. V. & Krimer, M. Z. Episulfonium ions: myth and reality. Acc. Chem. Res. 12, 282–288 (1979).

    Article  CAS  Google Scholar 

  6. Rayner, C. M. in Organosulfur Chemistry: Synthetic Aspects (ed. Page, P.) Ch. 3 (Academic Press, 1995).

    Google Scholar 

  7. Archer, N. J., Rayner, C. M., Bell, D. & Miller, D. Synthetic routes to novel homochiral sulfenyl sulfonium salts and their use as potential enantioselective sulfenylating agents. Asymmetric synthesis via homochiral thiiranium ions. Synlett. 617–619 (1994).

  8. Lucchini, V., Modena, G. & Pasquato, L. Enantiopure thiosulfonium salts in asymmetric synthesis. Face selectivity in electrophilic additions to unfunctionalised olefins. J. Chem. Soc. Chem. Commun. 1565–1566 (1994).

  9. Marigo, M., Wabnitz, T. C., Fielenbach, D. G. & Jørgensen, K. A. Enantioselective organocatalyzed α-sulfenylation of aldehydes. Angew. Chem. Int. Ed. 44, 794–797 (2005).

    Article  CAS  Google Scholar 

  10. Zhao, G.-L., Rios, R., Vesely, J., Eriksson, L. & Córdova, A. Organocatalytic enantioselective aminosulfenylation of α,β-unsaturated aldehydes. Angew. Chem. Int. Ed. 47, 8468–8472 (2008).

    Article  CAS  Google Scholar 

  11. Sobhani, S., Fielenbach, D. G., Marigo, M., Wabnitz, T. C. & Jørgensen, K. A. Direct organocatalytic asymmetric α-sulfenylation of activated C–H bonds in lactones, lactams, and β-dicarbonyl compounds. Chem. Eur. J. 11, 5689–5694 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Han, Z. et al. Highly enantioselective organocatalytic sulfenylation of 3-aryloxindoles. Org. Lett. 14, 4670–4673 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Guan, H., Wang, H., Huang, D. & Shi, Y. Enantioselective oxysulfenalytion and oxyselenylation of olefins catalyzed by chiral Brønsted acids. Tetrahedron 68, 2728–2735 (2012).

    Article  CAS  Google Scholar 

  14. Hamilton, G. L., Kanai, T. & Toste, F. D. Chiral anion-mediated asymmetric ring opening of meso-aziridinium and episulfonium ions. J. Am. Chem. Soc. 130, 14984–14986 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, S. & Jacobsen E. N. Thiourea-catalysed ring opening of episulfonium ions with indole derivatives by means of stabilizing non-covalent interactions. Nature Chem. 4, 817–824 (2012).

    Article  CAS  Google Scholar 

  16. Denmark, S. E. & Beutner G. L. Lewis base catalysis in organic synthesis. Angew. Chem. Int. Ed. 47, 1560–1638 (2008).

    Article  CAS  Google Scholar 

  17. Denmark, S. E. & Collins, W. R. Lewis base activation of Lewis acids: development of a Lewis base catalyzed selenolactonization. Org. Lett. 9, 3801–3804 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Denmark, S. E., Kalyani, D. & Collins, W. R. Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions. J. Am. Chem. Soc. 132, 15752–15765 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Denmark, S. E., Collins, W. R. & Cullen, M. D. Observation of direct sulfenium and selenenium group transfer from thiiranium and seleniranium ions to alkenes. J. Am. Chem. Soc. 131, 3490–3492 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Denmark, S. E. & Vogler, T. Synthesis and reactivity of enantiomerically enriched thiiranium ions. Chem. Eur. J. 15, 11737–11745 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Denmark, S. E., Kornfilt, D. J. P. & Vogler, T. Catalytic asymmetric thiofunctionalization of unactivated alkenes. J. Am. Chem. Soc. 133, 15308–15311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Denmark, S. E. & Chi, H. M. Catalytic, enantioselective, intramolecular carbosulfenylation of olefins. Mechanistic aspects: a remarkable case of negative catalysis. J. Am. Chem. Soc. 136, 3655–3663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Denmark, S. E. & Jaunet, A. Catalytic, enantioselective, intramolecular carbosulfenylation of olefins. J. Am. Chem. Soc. 135, 6419–6422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Denmark, S. E. & Jaunet, A. Catalytic, enantioselective, intramolecular carbosulfenylation of olefins. Preparative and stereochemical aspects. J. Org. Chem. 79, 140–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Denmark, S. E. & Chi, H. M. J. Am. Chem. Soc. 136, 8915–8918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krossing, I. & Raabe, I. Noncoordinating anions—fact or fiction? A survey of likely candidates. Angew. Chem. Int. Ed. 43, 2066–2090 (2004).

    Article  CAS  Google Scholar 

  27. Hartmann, F., Dahlems, T. & Mootz, D. Crystal structure of hexamethylphosphoric triamide (C2H3N)3PO. Z. Kristallogr. New Cryst. Struct. 213, 639–640 (1998).

    CAS  Google Scholar 

  28. Denmark, S. E. & Eklov, B. M. Neutral and cationic phosphoramide adducts of silicon tetrachloride: synthesis and characterization of their solution and solid-state structures. Chem. Eur. J. 14, 234–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Arduengo, A. J. & Burgess, E. M. Tricoordinate hypervalent sulfur-compounds. J. Am. Chem. Soc. 99, 2376–2378 (1977).

    Article  CAS  Google Scholar 

  30. Kuhn, N., Bohnen, H., Fahl, J., Bläser, D. & Boese, R. Koordination oder Reduktion? Zur Reaktion von 1,3-Diisopropy1-4,5-dimethylimidazol-Zyliden mit Schwefelhalogeniden und Schwefeloxidhalogeniden. Chem. Ber. 129, 1579–1586 (1996).

    Article  CAS  Google Scholar 

  31. Godfrey, S. M., Ollerenshaw R. T. A., Pritchard, R. G. & Richards, C. L. Structural isomerism in R3PSe(Ph)I compounds: the ionic structure of [(Me2N)3PSePh]I. J. Chem. Soc. Dalton Trans. 508–509 (2001).

  32. Goldstein, E., Beno, B. & Houk, K. N. Density functional theory prediction of the relative energies and isotope effects for the concerted and stepwise mechanisms of the Diels–Alder reaction of butadiene and ethylene. J. Am. Chem. Soc. 118, 6036–6043 (1996).

    Article  CAS  Google Scholar 

  33. Cantillo, D. & Kappe, C. O. A unified mechanistic view on the Morita–Baylis–Hillman reaction: computational and experimental investigations. J. Org. Chem. 75, 8615–8626 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Denmark, S. E. & Pham, S. M. Kinetic analysis of the divergence of reaction pathways in the chiral Lewis base promoted aldol addition of trichlorosilyl enolates: a rapid injection NMR study. Helv. Chim. Acta 83, 1846–1853 (2000).

    Article  CAS  Google Scholar 

  35. Sølling, T. I. & Radom, L. A G2 study of SH+ exchange reactions involving lone-pair donors and unsaturated hydrocarbons. Chem. Eur. J. 7, 1516–1524 (2001).

    Article  PubMed  Google Scholar 

  36. Sølling, T. I., Wild, S. B. & Radom, L. Are pi-ligand exchange reactions of thiirenium and thiiranium ions feasible? An ab initio investigation. Chem. Eur. J. 5, 509–514 (1999).

    Article  Google Scholar 

  37. Sølling, T. I., Wild, S. B. & Radom, L. Are the approach directions of σ and π nucleophiles to the sulfur atom of thiiranium and thiirenium ions different? Chem. Eur. J. 6, 590–591 (2000).

    Article  Google Scholar 

  38. Modena, G., Pasquato, L. & Lucchini, V. Different approaching directions of σ and π nucleophiles to the sulfur atom of thiiranium and thiirenium ions. Chem. Eur. J. 6, 589–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Fachini, M., Lucchini, V., Modena, G. Pasi, M. & Pasquato, L. Nucleophilic reactions at the sulfur of thiiranium and thiirenium ions. New insight in the electrophilic additions to alkenes and alkynes. Evidence for an episulfurane intermediate. J. Am. Chem. Soc. 121, 3944–3950 (1999).

    Article  CAS  Google Scholar 

  40. Bach, R. D., Andres, J. L., Owensby, A. L., Schlegel, H. B. & McDouall, J. J. W. Electronic structure and reactivity of dioxirane and carbonyl oxide. J. Am. Chem. Soc. 114, 7207–7217 (1992).

    Article  CAS  Google Scholar 

  41. Houk, K. N., Liu, J., Demello, N. C. & Condroski, K. R. Transition states of epoxidations: diradical character, spiro geometries, transition state flexibility, and the origins of stereoselectivity J. Am. Chem. Soc. 119, 10147–10152 (1997).

    Article  CAS  Google Scholar 

  42. Dmitrenko, O. & Bach, R. D. Reassessment of the level of theory required for the epoxidation of ethylene with dioxiranes. J. Phys. Chem. A 108, 6886–6892 (2004).

    Article  CAS  Google Scholar 

  43. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  44. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  45. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    Article  CAS  Google Scholar 

  46. Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Ess, D. H. & Houk, K. N. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. J. Am. Chem. Soc. 130, 10187–10198 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Glendening, E. D., Reed, A. E., Carpenter, J. E. & Weinhold, F. NBO Version 3.1 (Theoretical Chemistry Institute, University of Wisconsin, 2001).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Institutes of Health (GM R01-085235). E.H. thanks the Deutscher Akademischer Austauschdienst for a postdoctoral fellowship. D.J-P.K. thanks the University of Illinois for a Seemon H. Pines Graduate Fellowship in Synthetic Organic Chemistry. The authors thank L.M. Wolf (MPI-Mühlheim) for assistance with the computational analysis.

Author information

Authors and Affiliations

Authors

Contributions

E.H. planned and carried out the experimental work and obtained the X-ray structure of 5b. D.J-P.K. carried out the kinetic analysis and H.W. performed the transition state calculations. S.E.D. initiated and directed the project. E.H. wrote the manuscript with the assistance of the other authors.

Corresponding author

Correspondence to Scott E. Denmark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4612 kb)

Supplementary information

Crystallographic data for compound (±)-5b (CIF 56 kb)

Supplementary information

Crystallographic data for compound S5 (CIF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denmark, S., Hartmann, E., Kornfilt, D. et al. Mechanistic, crystallographic, and computational studies on the catalytic, enantioselective sulfenofunctionalization of alkenes. Nature Chem 6, 1056–1064 (2014). https://doi.org/10.1038/nchem.2109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing