Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Catalysis in service of main group chemistry offers a versatile approach to p-block molecules and materials

Abstract

Catalytic reactions that enable the formation of new bonds to carbon centres play a pervasive role in the state-of-the-art synthesis of organic molecules and macromolecules. In contrast, the development of analogous processes as routes to main group compounds and materials has been much slower. Nevertheless, recent advances have led to a broad expansion of this field and now allow access to a wide range of catenated structures based on elements across the p block. These breakthroughs have already impacted areas such as hydrogen storage and transfer, functional inorganic polymers and ceramic thin films. Dehydrogenation and dehydrocoupling processes are particularly well developed and may be mediated by either transition metal or main group catalysts. Such pathways represent an increasingly attractive and convenient alternative to traditional routes, such as salt metathesis and reductive coupling reactions. An overview of this emerging area is presented in this Review with a focus on recent developments and future challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early examples of catalytic dehydrocoupling to form homonuclear (E–E) and heteronuclear (E–E′) bonds.
Figure 2: E–H bond comparisons and periodic trends for p-block main group elements.
Figure 3: Synthetic routes to homonuclear and heteronuclear lighter main group element–element bonds.
Figure 4: Potential applications for dehydrocoupling processes involving adducts of groups 13–15.
Figure 5: Synthetic routes for the formation of homonuclear heavier main group bonds.
Figure 6: Developing mechanistic insight for the catalytic formation of group 14 polymers.
Figure 7: A summary of representative catalysts and relevant catalytic cycles for the dehydrogenation and dehydrocoupling of adducts of groups 13–15 to form oligomeric and polymeric N–B and P–B species.
Figure 8: Recent breakthroughs in catalytic dehydrocoupling and other coupling processes for p-block elements.

Similar content being viewed by others

References

  1. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/.

  2. Nobel Lectures in Chemistry 6–24; 27–60 (Elsevier, 1972).

  3. Grubbs, R. H. Olefin metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew. Chem. Int. Ed. 45, 3760–3765 (2006).

    CAS  Google Scholar 

  4. Beletskaya, I. P. & Cheprakov, A. V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 100, 3009–3066 (2000).

    CAS  PubMed  Google Scholar 

  5. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    CAS  Google Scholar 

  6. Wilczynski, R. & Sneddon, L. G. Transition metal catalyzed reactions of alkynes and boron hydrides: synthesis of 2-(cis-2-butenyl)pentaborane(9) and its conversion into monocarbon carboranes. J. Am. Chem. Soc. 102, 2857–2858 (1980).

    CAS  Google Scholar 

  7. Troegel, D. & Stohrer, J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord. Chem. Rev. 255, 1440–1459 (2011).

    CAS  Google Scholar 

  8. Delacroix, O. & Gaumont, A. C. Hydrophosphination of unactivated alkenes, dienes and alkynes: a versatile and valuable approach for the synthesis of phosphines. Curr. Org. Chem. 9, 1851–1882 (2005).

    CAS  Google Scholar 

  9. Wolfe, J. P., Wagaw, S., Marcoux, J. F. & Buchwald, S. L. Rational development of practical catalysts for aromatic carbon–nitrogen bond formation. Acc. Chem. Res. 31, 805–818 (1998).

    CAS  Google Scholar 

  10. Hartwig, J. F. Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature 455, 314–322 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Franz, A. K. & Wilson, S. O. Organosilicon molecules with medicinal applications. J. Med. Chem. 56, 388–405 (2013).

    CAS  PubMed  Google Scholar 

  12. Mark, J. E., Allcock, H. R. & West, R. Inorganic Polymers 2nd edn (Oxford Univ. Press, 2005).

    Google Scholar 

  13. Baumgartner, T. & Reau, R. Organophosphorus π-conjugated materials. Chem. Rev. 106, 4681–4727 (2006).

    CAS  PubMed  Google Scholar 

  14. Nunns, A., Gwyther, J. & Manners, I. Inorganic block copolymer lithography. Polymer 54, 1269–1284 (2013).

    CAS  Google Scholar 

  15. Wideman, T. & Sneddon, L. G. Dipentylamine-modified polyborazylene: a new, melt-spinnable polymeric precursor to boron nitride ceramic fibers. Chem. Mater. 8, 3–5 (1996).

    CAS  Google Scholar 

  16. Corcoran, E. W. & Sneddon, L. G. Transition-metal-promoted reactions of boron hydrides. 6. Platinum(II) bromide catalyzed borane and carborane dehydrodimerization reactions: a new synthetic route to boron–boron linked multicage boranes and carboranes. J. Am. Chem. Soc. 106, 7793–7800 (1984).

    CAS  Google Scholar 

  17. Corcoran, E. W. & Sneddon, L. G. Transition-metal-promoted reactions of boron hydrides. 7. Platinum(II) bromide catalyzed cage growth and dehydrocoupling reactions of diborane with small polyhedral carboranes and boranes: synthesis of a new arachno carborane, 5,6-C2B6H12, and the diborane-coupled compounds 2:1', 2'[1,6-C2B4H5][B2H5] and 2:1', 2'-[B5H8][B2H5]. J. Am. Chem. Soc. 107, 7446–7450 (1985).

    CAS  Google Scholar 

  18. Aitken, C., Harrod, J. F. & Samuel, E. Polymerization of primary silanes to linear polysilanes catalyzed by titanocene derivatives. J. Organomet. Chem. 279, C11–C13 (1985).

    CAS  Google Scholar 

  19. He, J. L., Liu, H. Q., Harrod, J. F. & Hynes, R. Dehydrocoupling reactions of organosilanes with hydrazines. Organometallics 13, 336–343 (1994).

    CAS  Google Scholar 

  20. Blum, Y. & Laine, R. M. Catalytic methods for the synthesis of oligosilazanes. Organometallics 5, 2081–2086 (1986).

    CAS  Google Scholar 

  21. Biran, C. et al. Catalytic synthesis of oligosilazanes. J. Mol. Catal. 48, 183–197 (1988).

    CAS  Google Scholar 

  22. Shu, R. H., Hao, L. J., Harrod, J. F., Woo, H. G. & Samuel, E. Heterodehydrocoupling of phosphines and silanes catalyzed by titanocene: a novel route to the formation of Si–P bonds. J. Am. Chem. Soc. 120, 12988–12989 (1998).

    CAS  Google Scholar 

  23. Kutzelnigg, W. Chemical bonding in higher main group elements. Angew. Chem. Int. Ed. Engl. 23, 272–295 (1984).

    Google Scholar 

  24. Power, P. P. π-bonding and the lone pair effect in multiple bonds between heavier main group elements. Chem. Rev. 99, 3463–3503 (1999).

    CAS  PubMed  Google Scholar 

  25. Ciobanu, O. et al. Thermal and catalytic dehydrogenation of the guanidine–borane adducts H3B·hppH (hppH = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) and H3B·N(H)C(NMe2)2: a combined experimental and quantum chemical study. Eur. J. Inorg. Chem. 2008, 5482–5493 (2008).

    Google Scholar 

  26. Kleeberg, C., Dang, L., Lin, Z. Y. & Marder, T. B. A facile route to aryl boronates: room-temperature, copper-catalyzed borylation of aryl halides with alkoxy diboron reagents. Angew. Chem. Int. Ed. 48, 5350–5354 (2009).

    CAS  Google Scholar 

  27. Liskey, C. W. & Hartwig, J. F. Iridium-catalyzed C-H borylation of cyclopropanes. J. Am. Chem. Soc. 135, 3375–3378 (2013).

    CAS  PubMed  Google Scholar 

  28. Brotherton, R. J., McCloskey, A. L., Boone, J. L. & Manasevit, H. M. The preparation and properties of some tetraalkoxydiborons. J. Am. Chem. Soc. 82, 6245–6248 (1960).

    CAS  Google Scholar 

  29. Anastasi, N. R., Waltz, K. M., Weerakoon, W. L. & Hartwig, J. F. A short synthesis of tetraalkoxydiborane(4) reagents. Organometallics 22, 365–369 (2003).

    CAS  Google Scholar 

  30. Braunschweig, H. & Guethlein, F. Transition-metal-catalyzed synthesis of diboranes(4). Angew. Chem. Int. Ed. 50, 12613–12616 (2011).

    CAS  Google Scholar 

  31. Braunschweig, H. et al. Observation of elementary steps in the catalytic borane dehydrocoupling reaction. Chem. Eur. J. 18, 8605–8609 (2012).

    CAS  PubMed  Google Scholar 

  32. Corey, J. Y. The Chemistry of Organic Silicon Compounds 1–56 (Wiley, 1989).

    Google Scholar 

  33. West, R. The Chemistry of Organic Silicon Compounds (Wiley, 1989).

    Google Scholar 

  34. Smith, E. E., Du, G. D., Fanwick, P. E. & Abu-Omar, M. M. Dehydrocoupling of organosilanes with a dinuclear nickel hydride catalyst and isolation of a nickel silyl complex. Organometallics 29, 6527–6533 (2010).

    CAS  Google Scholar 

  35. Tanabe, M., Takahashi, A., Fukuta, T. & Osakada, K. Nickel-catalyzed cyclopolymerization of hexyl- and phenylsilanes. Organometallics 32, 1037–1043 (2013).

    CAS  Google Scholar 

  36. Wetherby, A. E., Mucha, N. T. & Waterman, R. High activity and selectivity for silane dehydrocoupling by an iridium catalyst. ACS Catal. 2, 1404–1407 (2012).

    CAS  Google Scholar 

  37. Fermin, M. C. & Stephan, D. W. Catalytic oligomerization of primary phosphines by the anionic zirconocene trihydride: [Cp*2ZrH3]. J. Am. Chem. Soc. 117, 12645–12646 (1995).

    CAS  Google Scholar 

  38. Bohm, V. P. W. & Brookhart, M. Dehydrocoupling of phosphanes catalyzed by a rhodium(I) complex. Angew. Chem. Int. Ed. 40, 4694–4696 (2001).

    CAS  Google Scholar 

  39. Zhou, Y. B. et al. Selective P–P and P-O-P bond formations through copper-catalyzed aerobic oxidative dehydrogenative couplings of H-phosphonates. Angew. Chem. Int. Ed. 49, 6852–6855 (2010).

    CAS  Google Scholar 

  40. Naseri, V., Less, R. J., Mulvey, R. E., McPartlin, M. & Wright, D. S. Stoichiometric and catalytic Sn-mediated dehydrocoupling of primary phosphines. Chem. Commun. 46, 5000–5002 (2010).

    CAS  Google Scholar 

  41. Kinas, R. W., Okruszek, A. & Stec, W. J. Reinvestigation of the reaction between sodium diethyl phosphite and diethyl phosphorochloridate: evidence for a SET process in the formation of a direct P(IV)–P(IV) bond. Tetrahedron Lett. 43, 7875–7879 (2002).

    CAS  Google Scholar 

  42. Zhang, R. Z., Mark, J. E. & Pinhas, A. R. Dehydrocoupling polymerization of bis-silanes and disilanols to poly(silphenylenesiloxane) as catalyzed by rhodium complexes. Macromolecules 33, 3508–3510 (2000).

    CAS  Google Scholar 

  43. Li, Y. N. & Kawakami, Y. Synthesis and properties of polymers containing silphenylene moiety via catalytic cross-dehydrocoupling polymerization of 1,4-bis(dimethylsilyl)benzene. Macromolecules 32, 8768–8773 (1999).

    CAS  Google Scholar 

  44. Miles, D., Ward, J. & Foucher, D. A. Polyferrocenyldisiloxane from the platinum-catalyzed reactions of tertiary bis(dimethylsilyl)ferrocene in a polar aprotic solvent. Macromolecules 42, 9199–9203 (2009).

    CAS  Google Scholar 

  45. Grande, J. B., Thompson, D. B., Gonzaga, F. & Brook, M. A. Testing the functional tolerance of the Piers-Rubinsztajn reaction: a new strategy for functional silicones. Chem. Commun. 46, 4988–4990 (2010).

    CAS  Google Scholar 

  46. Grande, J. B. et al. Anhydrous formation of foamed silicone elastomers using the Piers-Rubinsztajn reaction. Polymer 53, 3135–3142 (2012).

    CAS  Google Scholar 

  47. Kamino, B. A., Grande, J. B., Brook, M. A. & Bender, T. P. Siloxane-triarylamine hybrids: discrete room temperature liquid triarylamines via the Piers-Rubinsztajn reaction. Org. Lett. 13, 154–157 (2011).

    CAS  PubMed  Google Scholar 

  48. Kamino, B. A. et al. Liquid triarylamines: the scope and limitations of Piers-Rubinsztajn conditions for obtaining triarylamine-siloxane hybrid materials. J. Org. Chem. 77, 1663–1674 (2012).

    CAS  PubMed  Google Scholar 

  49. Gretton, M. J., Kamino, B. A. & Bender, T. P. Extension of the application of Piers-Rubinsztajn conditions to produce triarylamine pendant dimethylsiloxane copolymers. Macromol. Symp. 324, 82–94 (2013).

    CAS  Google Scholar 

  50. Suzuki, N., Kawai, T., Inoue, S., Sano, N. & Izawa, Y. Photochemical type-I and type-II elimination-reactions of dialkyl (trichloromethyl)phosphonates. Bull. Chem. Soc. Jpn 53, 1421–1424 (1980).

    CAS  Google Scholar 

  51. Jin, X. J., Yamaguchi, K. & Mizuno, N. Copper-catalyzed oxidative cross-coupling of H-phosphonates and amides to N-acylphosphoramidates. Org. Lett. 15, 418–421 (2013).

    CAS  PubMed  Google Scholar 

  52. Dunne, J. F., Neal, S. R., Engelkemier, J., Ellern, A. & Sadow, A. D. Tris(oxazolinyl)boratomagnesium-catalyzed cross-dehydrocoupling of organosilanes with amines, hydrazine, and ammonia. J. Am. Chem. Soc. 133, 16782–16785 (2011).

    CAS  PubMed  Google Scholar 

  53. Konigs, C. D. F., Muller, M. F., Aiguabella, N., Klare, H. F. T. & Oestreich, M. Catalytic dehydrogenative Si-N coupling of pyrroles, indoles, carbazoles as well as anilines with hydrosilanes without added base. Chem. Commun. 49, 1506–1508 (2013).

    Google Scholar 

  54. Liu, H. Q. & Harrod, J. F. Copper(I)-catalyzed cross-dehydrocoupling reactions of silanes and amines. Can. J. Chem. 70, 107–110 (1992).

    CAS  Google Scholar 

  55. Wang, J. X., Dash, A. K., Berthet, J. C., Ephritikhine, M. & Eisen, M. S. Dehydrocoupling reactions of amines with silanes catalyzed by [(Et2N)3U][BPh4]. J. Organomet. Chem. 610, 49–57 (2000).

    CAS  Google Scholar 

  56. Xie, W. L., Hu, H. F. & Cui, C. M. [(NHC)Yb{N(SiMe3)2}2]-catalyzed cross-dehydrogenative coupling of silanes with amines. Angew. Chem. Int. Ed. 51, 11141–11144 (2012).

    CAS  Google Scholar 

  57. Kennedy, D. C., Duguay, D. R., Tay, L. L., Richeson, D. S. & Pezacki, J. P. SERS detection and boron delivery to cancer cells using carborane labelled nanoparticles. Chem. Commun. 6750–6752 (2009).

  58. Spokoyny, A. M., Lewis, C. D., Teverovskiy, G. & Buchwald, S. L. Extremely electron-rich, boron-functionalized, icosahedral carborane-based phosphinoboranes. Organometallics 31, 8478–8481 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sevryugina, Y., Julius, R. L. & Hawthorne, M. F. Novel approach to aminocarboranes by mild amidation of selected iodo-carboranes. Inorg. Chem. 49, 10627–10634 (2010).

    CAS  PubMed  Google Scholar 

  60. Staubitz, A., Robertson, A. P. M. & Manners, I. Ammonia-borane and related compounds as dihydrogen sources. Chem. Rev. 110, 4079–4124 (2010).

    CAS  PubMed  Google Scholar 

  61. Sutton, A. D. et al. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science 331, 1426–1429 (2011).

    CAS  PubMed  Google Scholar 

  62. Luo, W., Campbell, P. G., Zakharov, L. N. & Liu, S. Y. A single-component liquid-phase hydrogen storage material. J. Am. Chem. Soc. 133, 19326–19329 (2011).

    CAS  PubMed  Google Scholar 

  63. Yoon, C. W. & Sneddon, L. G. Ammonia triborane: a promising new candidate for amineborane-based chemical hydrogen storage. J. Am. Chem. Soc. 128, 13992–13993 (2006).

    CAS  PubMed  Google Scholar 

  64. Ciobanu, O., Kaifer, E., Enders, M. & Himmel, H. J. Synthesis of a stable B2H5+ analogue by protonation of a double base-stabilized diborane(4). Angew. Chem. Int. Ed. 48, 5538–5541 (2009).

    CAS  Google Scholar 

  65. Bodensteiner, M., Vogel, U., Timoshkin, A. Y. & Scheer, M. Controlled oligomerization of Lewis acid/base-stabilized phosphanylalanes. Angew. Chem. Int. Ed. 48, 4629–4633 (2009).

    CAS  Google Scholar 

  66. Staubitz, A., Robertson, A. P. M., Sloan, M. E. & Manners, I. Amine- and phosphine-borane adducts: new interest in old molecules. Chem. Rev. 110, 4023–4078 (2010).

    CAS  PubMed  Google Scholar 

  67. Liu, Z. et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032–2037 (2011).

    CAS  PubMed  Google Scholar 

  68. Staubitz, A., Soto, A. P. & Manners, I. Iridium-catalyzed dehydrocoupling of primary amine-borane adducts: a route to high molecular weight polyaminoboranes, boron-nitrogen analogues of polyolefins. Angew. Chem. Int. Ed. 47, 6212–6215 (2008).

    CAS  Google Scholar 

  69. Dietrich, B. L., Goldberg, K. I., Heinekey, D. M., Autrey, T. & Linehan, J. C. Iridium-catalyzed dehydrogenation of substituted amine boranes: kinetics, thermodynamics, and implications for hydrogen storage. Inorg. Chem. 47, 8583–8585 (2008).

    CAS  PubMed  Google Scholar 

  70. Staubitz, A. et al. Catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane and ammonia-borane: synthesis and characterization of high molecular weight polyaminoboranes. J. Am. Chem. Soc. 132, 13332–13345 (2010).

    CAS  PubMed  Google Scholar 

  71. Dorn, H. et al. Transition-metal-catalyzed formation of phosphorus–boron bonds: a new route to phosphinoborane rings, chains, and macromolecules. J. Am. Chem. Soc. 122, 6669–6678 (2000).

    CAS  Google Scholar 

  72. Clark, T. L. et al. Rhodium-catalyzed dehydrocoupling of fluorinated phosphine-borane adducts: synthesis, characterization, and properties of cyclic and polymeric phosphinoboranes with electron-withdrawing substituents at phosphorus. Chem. Eur. J. 11, 4526–4534 (2005).

    CAS  PubMed  Google Scholar 

  73. Aitken, C., Harrod, J. F., Malek, A. & Samuel, E. Oligomerization of phenylgermanes by catalytic dehydrocoupling. J. Organomet. Chem. 349, 285–291 (1988).

    CAS  Google Scholar 

  74. Choi, N. & Tanaka, M. Zirconocene-catalyzed dehydrogenative coupling of phenylgermane and properties of the resulting partially network polyphenylgermanes. J. Organomet. Chem. 564, 81–84 (1998).

    CAS  Google Scholar 

  75. Reichl, J. A., Popoff, C. M., Gallagher, L. A., Remsen, E. E. & Berry, D. H. Ruthenium-catalyzed demethanative coupling of HGeMe3: a high yield route to polygermanes. J. Am. Chem. Soc. 118, 9430–9431 (1996).

    CAS  Google Scholar 

  76. Imori, T., Lu, V., Cai, H. & Tilley, T. D. Metal-catalyzed dehydropolymerization of secondary stannanes to high molecular weight polystannanes. J. Am. Chem. Soc. 117, 9931–9940 (1995).

    CAS  Google Scholar 

  77. Lu, V. & Tilley, T. D. Low-band-gap, σ-conjugated polymers: poly(diarylstannanes). Macromolecules 29, 5763–5764 (1996).

    CAS  Google Scholar 

  78. Trummer, M., Choffat, F., Smith, P. & Caseri, W. Polystannanes: synthesis, properties, and outlook. Macromol. Rapid Commun. 33, 448–460 (2012).

    CAS  PubMed  Google Scholar 

  79. Choffat, F., Smith, P. & Caseri, W. Facile synthesis of linear poly(dibutylstannane). J. Mater. Chem. 15, 1789–1792 (2005).

    CAS  Google Scholar 

  80. Choffat, F., Smith, P. & Caseri, W. Polystannanes: polymers of a molecular, jacketed metal-wire structure. Adv. Mater. 20, 2225–2229 (2008).

    CAS  Google Scholar 

  81. Choffat, F. et al. Synthesis and characterization of linear poly(dialkylstannane)s. Macromolecules 40, 7878–7889 (2007).

    CAS  Google Scholar 

  82. Jousseaume, B., Noiret, N., Pereyre, M., Saux, A. & Frances, J. M. Air activated organotin catalysts for silicone curing and polyurethane preparation. Organometallics 13, 1034–1038 (1994).

    CAS  Google Scholar 

  83. Waterman, R. Selective dehydrocoupling of phosphines by triamidoamine zirconium catalysts. Organometallics 26, 2492–2494 (2007).

    CAS  Google Scholar 

  84. Roering, A. J., MacMillan, S. N., Tanski, J. M. & Waterman, R. Zirconium-catalyzed heterodehydrocoupling of primary phosphines with silanes and germanes. Inorg. Chem. 46, 6855–6857 (2007).

    CAS  PubMed  Google Scholar 

  85. Roering, A. J., Davidson, J. J., MacMillan, S. N., Tanski, J. M. & Waterman, R. Mechanistic variety in zirconium-catalyzed bond-forming reaction of arsines. Dalton Trans. 4488–4498 (2008).

  86. Waterman, R. & Tilley, T. D. Antimony–antimony bond formation by reductive elimination from a hafnium bis(stibido) complex. Inorg. Chem. 45, 9625–9627 (2006).

    CAS  PubMed  Google Scholar 

  87. Fischer, J. M., Piers, W. E., Batchilder, S. D. P. & Zaworotko, M. J. Titanium-mediated heterodehydrocoupling of tributylstannane and tellurium: X-ray structure of (C5Me5)2TiTeSn(C6H5)3 . J. Am. Chem. Soc. 118, 283–284 (1996).

    CAS  Google Scholar 

  88. Corey, J. Y. Dehydrocoupling of hydrosilanes to polysilanes and silicon oligomers: a 30 year overview. Adv. Organomet. Chem. 51, 1–52 (2004).

    CAS  Google Scholar 

  89. Tilley, T. D. The coordination polymerization of silanes to polysilanes by a “σ-bond metathesis” mechanism. Implications for linear chain growth. Acc. Chem. Res. 26, 22–29 (1993).

    CAS  Google Scholar 

  90. Baumgartner, T. & Wilk, W. Synthesis and unexpected reactivity of Si-H functionalized dithieno[3,2-b:2', 3'-d]phospholes. Org. Lett. 8, 503–506 (2006).

    CAS  PubMed  Google Scholar 

  91. Neale, N. R. & Tilley, T. D. A new mechanism for metal-catalyzed stannane dehydrocoupling based on α-H-elimination in a hafnium hydrostannyl complex. J. Am. Chem. Soc. 124, 3802–3803 (2002).

    CAS  PubMed  Google Scholar 

  92. Babcock, J. R. & Sita, L. R. Highly branched, high molecular weight polystannane from dibutylstannane via a novel dehydropolymerization/rearrangement process. J. Am. Chem. Soc. 118, 12481–12482 (1996).

    CAS  Google Scholar 

  93. Waterman, R. & Tilley, T. D. Catalytic antimony–antimony bond formation through stibinidene elimination from zirconocene and hafnocene complexes. Angew. Chem. Int. Ed. 45, 2926–2929 (2006).

    CAS  Google Scholar 

  94. Baker, R. T. et al. Iron complex-catalyzed ammonia-borane dehydrogenation: a potential route toward B–N-containing polymer motifs using earth-abundant metal catalysts. J. Am. Chem. Soc. 134, 5598–5609 (2012).

    CAS  PubMed  Google Scholar 

  95. Keaton, R. J., Blacquiere, J. M. & Baker, R. T. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J. Am. Chem. Soc. 129, 1844–1845 (2007).

    CAS  PubMed  Google Scholar 

  96. Vance, J. R., Robertson, A. P. M., Lee, K. & Manners, I. Photoactivated, iron-catalyzed dehydrocoupling of amine-borane adducts: formation of boron-nitrogen oligomers and polymers. Chem. Eur. J. 17, 4099–4103 (2011).

    CAS  PubMed  Google Scholar 

  97. Friedrich, A., Drees, M. & Schneider, S. Ruthenium-catalyzed dimethylamineborane dehydrogenation: stepwise metal-centered dehydrocyclization. Chem. Eur. J. 15, 10339–10342 (2009).

    CAS  PubMed  Google Scholar 

  98. Jaska, C. A., Temple, K., Lough, A. J. & Manners, I. Rhodium-catalyzed formation of boron-nitrogen bonds: a mild route to cyclic aminoboranes and borazines. Chem. Commun. 962–963 (2001).

  99. Helten, H. et al. Paramagnetic titanium(III) and zirconium(III) metallocene complexes as precatalysts for the dehydrocoupling/dehydrogenation of amine-boranes. Angew. Chem. Int. Ed. 52, 437–440 (2013).

    CAS  Google Scholar 

  100. Sloan, M. E. et al. Homogeneous catalytic dehydrocoupling/dehydrogenation of amine-borane adducts by early transition metal, group 4 metallocene complexes. J. Am. Chem. Soc. 132, 3831–3841 (2010).

    CAS  PubMed  Google Scholar 

  101. Jiang, Y. & Berke, H. Dehydrocoupling of dimethylamine-borane catalysed by rhenium complexes and its application in olefin transfer-hydrogenations. Chem. Commun. 3571–3573 (2007).

  102. Hill, M. S., Kociok-Kohn, G. & Robinson, T. P. Group 3-centred dehydrocoupling of Me2NH·BH3 . Chem. Commun. 46, 7587–7589 (2010).

    CAS  Google Scholar 

  103. Hansmann, M. M., Melen, R. L. & Wright, D. S. Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Chem. Sci. 2, 1554–1559 (2011).

    CAS  Google Scholar 

  104. Spielmann, J., Buch, F. & Harder, S. Early main-group metal catalysts for the hydrogenation of alkenes with H2 . Angew. Chem. Int. Ed. 47, 9434–9438 (2008).

    CAS  Google Scholar 

  105. Ledger, A. E. W., Ellul, C. E., Mahon, M. F., Williams, J. M. J. & Whittlesey, M. K. Ruthenium bidentate phosphine complexes for the coordination and catalytic dehydrogenation of amine- and phosphine-boranes. Chem. Eur. J. 17, 8704–8713 (2011).

    CAS  PubMed  Google Scholar 

  106. Sewell, L. J., Lloyd-Jones, G. C. & Weller, A. S. Development of a generic mechanism for the dehydrocoupling of amine-boranes: a stoichiometric, catalytic, and kinetic study of H3B·NMe2H using the [Rh(PCy3)2]+ fragment. J. Am. Chem. Soc. 134, 3598–3610 (2012).

    CAS  PubMed  Google Scholar 

  107. Huertos, M. A. & Weller, A. S. Intermediates in the Rh-catalysed dehydrocoupling of phosphine-borane. Chem. Commun. 48, 7185–7187 (2012).

    CAS  Google Scholar 

  108. Huertos, M. A. & Weller, A. S. Revealing the P–B coupling event in the rhodium catalysed dehydrocoupling of phosphine-boranes H3B·PR2H (R = tBu, Ph). Chem. Sci. 4, 1881–1888 (2013).

    CAS  Google Scholar 

  109. Johnson, H. C. et al. Catching the first oligomerization event in the catalytic formation of polyaminoboranes: H3BNMeH.BH2.NMeH2 bound to iridium. J. Am. Chem. Soc. 133, 11076–11079 (2011).

    CAS  PubMed  Google Scholar 

  110. Shimoi, M. et al. Coordination compounds of monoborane-Lewis base adducts: syntheses and structures of [M(CO)5(η1-BH3·L)] (M = Cr, Mo, W; L = NMe3, PMe3, PPh3). J. Am. Chem. Soc. 121, 11704–11712 (1999).

    CAS  Google Scholar 

  111. Chapman, A. M., Haddow, M. F. & Wass, D. F. Frustrated Lewis pairs beyond the main group: cationic zirconocene-phosphinoaryloxide complexes and their application in catalytic dehydrogenation of amine boranes. J. Am. Chem. Soc. 133, 8826–8829 (2011).

    CAS  PubMed  Google Scholar 

  112. Alcaraz, G., Vendier, L., Clot, E. & Sabo-Etienne, S. Ruthenium bis(σ-B-H) aminoborane complexes from dehydrogenation of amine-boranes: trapping of H2B-NH2 . Angew. Chem. Int. Ed. 49, 918–920 (2010).

    CAS  Google Scholar 

  113. Alcaraz, G. & Sabo-Etienne, S. Coordination and dehydrogenation of amine-boranes at metal centers. Angew. Chem. Int. Ed. 49, 7170–7179 (2010).

    CAS  Google Scholar 

  114. Tang, C. Y., Thompson, A. L. & Aldridge, S. Dehydrogenation of saturated CC and BN bonds at cationic N-heterocyclic carbene stabilized M(III) centers (M = Rh, Ir). J. Am. Chem. Soc. 132, 10578–10591 (2010).

    CAS  PubMed  Google Scholar 

  115. Tang, C. Y. et al. Dimethylamine borane dehydrogenation chemistry: syntheses, X-ray and neutron diffraction studies of 18-electron aminoborane and 14-electron aminoboryl complexes. Chem. Commun. 48, 8096–8098 (2012).

    CAS  Google Scholar 

  116. Chaplin, A. B. & Weller, A. S. B–H activation at a rhodium(I) center: isolation of a bimetallic complex relevant to the transition-metal-catalyzed dehydrocoupling of amine–boranes. Angew. Chem. Int. Ed. 49, 581–584 (2010).

    CAS  Google Scholar 

  117. Paul, A. & Musgrave, C. B. Catalyzed dehydrogenation of ammonia–borane by iridium dihydrogen pincer complex differs from ethane dehydrogenation. Angew. Chem. Int. Ed. 46, 8153–8156 (2007).

    CAS  Google Scholar 

  118. Rudolf, D., Storch, G., Kaifer, E. & Himmel, H. J. Synthesis of molecular gallium hydrides by means of low-temperature catalytic dehydrogenation. Eur. J. Inorg. Chem. 2368–2372 (2012).

  119. Elrod, L. T., Boxwala, H., Haq, H., Zhao, A. W. & Waterman, R. As–As bond formation via reductive elimination from a zirconocene bis(dimesitylarsenide) compound. Organometallics 31, 5204–5207 (2012).

    CAS  Google Scholar 

  120. Less, R. J., Melen, R. L. & Wright, D. S. Catalytic versus stoichiometric dehydrocoupling using main group metals. RSC Adv. 2, 2191–2199 (2012).

    CAS  Google Scholar 

  121. Bellham, P., Hill, M. S., Kociok-Kohn, G. & Liptrot, D. J. Bespoke synthesis of unsymmetrical diaminoboranes by alkaline earth catalysis. Chem. Commun. 49, 1960–1962 (2013).

    CAS  Google Scholar 

  122. Braunschweig, H. et al. Controlled homocatenation of boron on a transition metal. Nature Chem. 4, 563–567 (2012).

    CAS  Google Scholar 

  123. Thoms, C., Marquardt, C., Timoshkin, A. Y., Bodensteiner, M. & Scheer, M. The oligomerization of phosphinoborane by titanium complexes. Angew. Chem. Int. Ed. 52, 5150–5154 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Engineering and Physical Sciences Research Council. E.M.L. and T.J. thank the Marie Curie International Incoming Fellowship for funding. G. R. Whittell (Univ. Bristol, UK) is acknowledged for comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Manners.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitao, E., Jurca, T. & Manners, I. Catalysis in service of main group chemistry offers a versatile approach to p-block molecules and materials. Nature Chem 5, 817–829 (2013). https://doi.org/10.1038/nchem.1749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing