Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advances in the chemistry and applications of N-heterocyclic carbenes

Abstract

N-Heterocyclic carbenes, despite being isolated and characterized three decades ago, still capture scientists’ interest as versatile, modular and strongly coordinating moieties. In the last decade, driven by the increasingly refined fundamental understanding of their behaviour, the emergence of new carbene frameworks and cogent sustainability issues, N-heterocyclic carbenes have experienced a tremendous increase in utilization across several disparate fields. In this Review, a concise overview of N-heterocyclic carbenes encompassing their history, properties and applications in transition metal catalysis, on-surface chemistry, main group chemistry and organocatalysis is provided. Emphasis is placed on developments emerging in the last seven years and on envisaging future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the synthesis and applications of N-heterocyclic carbenes.
Fig. 2: Recent key advances, structural features and selected N-heterocyclic carbenes classes.
Fig. 3: Applications of N-heterocyclic carbenes in transition metal catalysis and surface modification.
Fig. 4: On-surface applications of N-heterocyclic carbenes.
Fig. 5: N-Heterocyclic carbene-induced advances in main group chemistry.
Fig. 6: Present and future organocatalytic applications of N-heterocyclic carbenes.

Similar content being viewed by others

References

  1. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014). General review dealing with NHCs.

    Article  CAS  PubMed  Google Scholar 

  3. Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–91 (2000). Authoritative general review on stable carbenes.

    Article  CAS  PubMed  Google Scholar 

  4. Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid, triply bonded species: synthesis of a stable λ3-phosphino carbene-λ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).

    Article  CAS  Google Scholar 

  5. Wanzlick, H.-W. & Schönherr, H.-J. Direct synthesis of a mercury salt-carbene complex. Angew. Chem. Int. Ed. Engl. 7, 141–142 (1968).

    Article  CAS  Google Scholar 

  6. Öfele, K. 1,3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer Übergangsmetall-carben-komplex. J. Organomet. Chem. 12, P42–P43 (1968).

    Article  Google Scholar 

  7. Arduengo, A. J., Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).

    Article  CAS  Google Scholar 

  8. Meng, F. et al. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups. Nature 537, 387–393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pony Yu, R., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).

    Article  CAS  Google Scholar 

  10. Hindi, K. M., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Youngs, W. J. The medicinal applications of imidazolium carbene–metal complexes. Chem. Rev. 109, 3859–3884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benhamou, L., Chardon, E., Lavigne, G., Bellemin-Laponnaz, S. & César, V. Synthetic routes to N-heterocyclic carbene precursors. Chem. Rev. 111, 2705–2733 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Huynh, H. V. Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem. Rev. 118, 9457–9492 (2018). Detailed review dealing with electronic properties of NHCs.

    Article  CAS  PubMed  Google Scholar 

  13. Dröge, T. & Glorius, F. The measure of all rings — N-heterocyclic carbenes. Angew. Chem. Int. Ed. 49, 6940–6952 (2010).

    Article  CAS  Google Scholar 

  14. Heinemann, C., Müller, T., Apeloig, Y. & Schwarz, H. On the question of stability, conjugation, and “aromaticity” in imidazol-2-ylidenes and their silicon analogs. J. Am. Chem. Soc. 118, 2023–2038 (1996).

    Article  CAS  Google Scholar 

  15. Vivancos, Á., Segarra, C. & Albrecht, M. Mesoionic and related less heteroatom-stabilized N-heterocyclic carbene complexes: synthesis, catalysis, and other applications. Chem. Rev. 118, 9493–9586 (2018). Up-to-date general review on recent advances of mesoionic and less heteroatom-stabilized NHCs.

    Article  CAS  PubMed  Google Scholar 

  16. Jazzar, R., Soleilhavoup, M. & Bertrand, G. Cyclic (alkyl)- and (aryl)-(amino)carbene coinage metal complexes and their applications. Chem. Rev. 120, 4141–4168 (2020). Comprehensive review on the chemistry of CAACs applied to transition metal complexes.

    Article  CAS  PubMed  Google Scholar 

  17. Melaimi, M., Jazzar, R., Soleilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): recent developments. Angew. Chem. Int. Ed. 56, 10046–10068 (2017).

    Article  CAS  Google Scholar 

  18. Soleilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise. Acc. Chem. Res. 48, 256–266 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Nelson, D. J. & Nolan, S. P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem. Soc. Rev. 42, 6723–6753 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Schuster, O., Yang, L., Raubenheimer, H. G. & Albrecht, M. Beyond conventional N-heterocyclic carbenes: abnormal, remote, and other classes of NHC ligands with reduced heteroatom stabilization. Chem. Rev. 109, 3445–3478 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Moerdyk, J. P., Schilter, D. & Bielawski, C. W. N,N′-diamidocarbenes: isolable divalent carbons with bona fide carbene reactivity. Acc. Chem. Res. 49, 1458–1468 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. McCarty, Z. R., Lastovickova, D. N. & Bielawski, C. W. A cyclic (alkyl)(amido)carbene: synthesis, study and utility as a desulfurization reagent. Chem. Commun. 52, 5447–5450 (2016).

    Article  CAS  Google Scholar 

  23. Gildner, M. B. & Hudnall, T. W. Cyclic (aryl)(amido)carbenes: pushing the π-acidity of amidocarbenes through benzannulation. Chem. Commun. 55, 12300–12303 (2019).

    Article  CAS  Google Scholar 

  24. Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center. Science 316, 439–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Peltier, J. L. et al. Realizing metal-free carbene-catalyzed carbonylation reactions with CO. J. Am. Chem. Soc. 142, 18336–18340 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Lavallo, V., Canac, Y., Präsang, C., Donnadieu, B. & Bertrand, G. Stable cyclic (alkyl)(amino)carbenes as rigid or flexible, bulky, electron-rich ligands for transition-metal catalysts: a quaternary carbon atom makes the difference. Angew. Chem. Int. Ed. 44, 5705–5709 (2005).

    Article  CAS  Google Scholar 

  27. Bakker, A. et al. An electron-rich cyclic (alkyl)(amino)carbene on Au(111), Ag(111), and Cu(111) surfaces. Angew. Chem. Int. Ed. 59, 13643–13646 (2020).

    Article  CAS  Google Scholar 

  28. Rao, B. et al. Cyclic (amino)(aryl)carbenes (CAArCs) as strong σ-donating and π-accepting ligands for transition metals. Angew. Chem. Int. Ed. 54, 14915–14919 (2015).

    Article  CAS  Google Scholar 

  29. Tomás-Mendivil, E. et al. Bicyclic (alkyl)(amino)carbenes (BICAACs): stable carbenes more ambiphilic than CAACs. J. Am. Chem. Soc. 139, 7753–7756 (2017).

    Article  PubMed  CAS  Google Scholar 

  30. Weinstein, C. M. et al. Highly ambiphilic room temperature stable six-membered cyclic (alkyl)(amino)carbenes. J. Am. Chem. Soc. 140, 9255–9260 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Munz, D. Pushing electrons — which carbene ligand for which application? Organometallics 37, 275–289 (2018).

    Article  CAS  Google Scholar 

  32. Herrmann, W. A. N-Heterocyclic carbenes: a new concept in organometallic catalysis. Angew. Chem. Int. Ed. 41, 1290–1309 (2002).

    Article  CAS  Google Scholar 

  33. Fortman, G. C. & Nolan, S. P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. Chem. Soc. Rev. 40, 5151–5169 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, Q., Meng, G., Nolan, S. P. & Szostak, M. N-Heterocyclic carbene complexes in C–H activation reactions. Chem. Rev. 120, 1981–2048 (2020). Excellent review dealing with the use of NHC–metal complexes in C–H activation processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Frémont, P., Marion, N. & Nolan, S. P. Carbenes: Synthesis, properties, and organometallic chemistry. Coord. Chem. Rev. 253, 862–892 (2009).

    Article  CAS  Google Scholar 

  36. Vougioukalakis, G. C. & Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Díez-González, S., Marion, N. & Nolan, S. P. N-Heterocyclic carbenes in late transition metal catalysis. Chem. Rev. 109, 3612–3676 (2009).

    Article  PubMed  CAS  Google Scholar 

  39. Zhang, D. & Zi, G. N-Heterocyclic carbene (NHC) complexes of group 4 transition metals. Chem. Soc. Rev. 44, 1898–1921 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Scattolin, T. & Nolan, S. P. Synthetic routes to late transition metal–NHC complexes. Trends Chem. 2, 721–736 (2020).

    Article  CAS  Google Scholar 

  41. Schrock, R. R. Multiple metal–carbon bonds for catalytic metathesis reactions (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3748–3759 (2006).

    Article  CAS  Google Scholar 

  42. Buchmeiser, M. R., Sen, S., Unold, J. & Frey, W. N-Heterocyclic carbene, high oxidation state molybdenum alkylidene complexes: functional-group-tolerant cationic metathesis catalysts. Angew. Chem. Int. Ed. 53, 9384–9388 (2014).

    Article  CAS  Google Scholar 

  43. Benedikter, M., Musso, J., Frey, W., Schowner, R. & Buchmeiser, M. R. Cationic group VI metal imido alkylidene N-heterocyclic carbene nitrile complexes: bench-stable, functional-group-tolerant olefin metathesis catalysts. Angew. Chem. Int. Ed. 60, 1374–1382 (2021).

    Article  CAS  Google Scholar 

  44. Falivene, L. et al. SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps. Organometallics 35, 2286–2293 (2016).

    Article  CAS  Google Scholar 

  45. Chauvin, Y. Olefin metathesis: The early days (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3740–3747 (2006).

    Article  CAS  Google Scholar 

  46. Grubbs, R. H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3760–3765 (2006).

    Article  CAS  Google Scholar 

  47. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Article  CAS  Google Scholar 

  48. Cheng, J., Wang, L., Wang, P. & Deng, L. High-oxidation-state 3d metal (Ti–Cu) complexes with N-heterocyclic carbene ligation. Chem. Rev. 118, 9930–9987 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Janssen-Müller, D., Schlepphorst, C. & Glorius, F. Privileged chiral N-heterocyclic carbene ligands for asymmetric transition-metal catalysis. Chem. Soc. Rev. 46, 4845–4854 (2017).

    Article  PubMed  Google Scholar 

  50. Jang, H., Romiti, F., Torker, S. & Hoveyda, A. H. Catalytic diastereo- and enantioselective additions of versatile allyl groups to N–H ketimines. Nat. Chem. 9, 1269–1275 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoveyda, A. H. et al. Sulfonate N-heterocyclic carbene–copper complexes: uniquely effective catalysts for enantioselective synthesis of C–C, C–B, C–H, and C–Si bonds. Angew. Chem. Int. Ed. 59, 21304–21359 (2020).

    Article  CAS  Google Scholar 

  52. Hamze, R. et al. Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime. Science 363, 601–606 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Zhukhovitskiy, A. V., MacLeod, M. J. & Johnson, J. A. Carbene ligands in surface chemistry: from stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev. 115, 11503–11532 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Smith, C. A. et al. N-Heterocyclic carbenes in materials chemistry. Chem. Rev. 119, 4986–5056 (2019). Excellent and comprehensive review on NHCs in materials chemistry.

    Article  CAS  PubMed  Google Scholar 

  55. Koy, M., Bellotti, P., Das, M. & Glorius, F. N-Heterocyclic carbenes as tunable ligands for catalytic metal surfaces. Nat. Catal. 4, 352–363 (2021).

    Article  CAS  Google Scholar 

  56. Crudden, C. M. et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 6, 409–414 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Crudden, C. M. et al. Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing. Nat. Commun. 7, 12654 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, G. et al. Ballbot-type motion of N-heterocyclic carbenes on gold surfaces. Nat. Chem. 9, 152–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Bakker, A. et al. Elucidating the binding modes of N-heterocyclic carbenes on a gold surface. J. Am. Chem. Soc. 140, 11889–11892 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Jiang, L. et al. N-Heterocyclic carbenes on close-packed coinage metal surfaces: bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu. Chem. Sci. 8, 8301–8308 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lovat, G. et al. Determination of the structure and geometry of N-heterocyclic carbenes on Au(111) using high-resolution spectroscopy. Chem. Sci. 10, 930–935 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Amirjalayer, S., Bakker, A., Freitag, M., Glorius, F. & Fuchs, H. Cooperation of N-heterocyclic carbenes on a gold surface. Angew. Chem. Int. Ed. 59, 21230–21235 (2020).

    Article  CAS  Google Scholar 

  63. Lara, P. et al. Ruthenium nanoparticles stabilized by N-heterocyclic carbenes: ligand location and influence on reactivity. Angew. Chem. Int. Ed. 50, 12080–12084 (2011).

    Article  CAS  Google Scholar 

  64. Baquero, E. A., Tricard, S., Flores, J. C., de Jesús, E. & Chaudret, B. Highly stable water-soluble platinum nanoparticles stabilized by hydrophilic N-heterocyclic carbenes. Angew. Chem. Int. Ed. 53, 13220–13224 (2014).

    Article  CAS  Google Scholar 

  65. Ernst, J. B., Muratsugu, S., Wang, F., Tada, M. & Glorius, F. Tunable heterogeneous catalysis: N-heterocyclic carbenes as ligands for supported heterogeneous Ru/K-Al2O3 catalysts to tune reactivity and selectivity. J. Am. Chem. Soc. 138, 10718–10721 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Ernst, J. B. et al. Molecular adsorbates switch on heterogeneous catalysis: induction of reactivity by N-heterocyclic carbenes. J. Am. Chem. Soc. 139, 9144–9147 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Man, R. W. Y. et al. Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands. J. Am. Chem. Soc. 140, 1576–1579 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. MacLeod, M. J. et al. Robust gold nanorods stabilized by bidentate N-heterocyclic-carbene–thiolate ligands. Nat. Chem. 11, 57–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Narouz, M. R. et al. N-Heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 11, 419–425 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Narouz, M. R. et al. Robust, highly luminescent Au13 superatoms protected by N-heterocyclic carbenes. J. Am. Chem. Soc. 141, 14997–15002 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Wu, C.-Y. Y. et al. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Doud, E. A. et al. In situ formation of N-heterocyclic carbene-bound single-molecule junctions. J. Am. Chem. Soc. 140, 8944–8949 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Cao, Z. et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 8120–8125 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Cao, Z. et al. Chelating N-heterocyclic carbene ligands enable tuning of electrocatalytic CO2 reduction to formate and carbon monoxide: surface organometallic chemistry. Angew. Chem. Int. Ed. 57, 4981–4985 (2018).

    Article  CAS  Google Scholar 

  75. MacLeod, M. J. & Johnson, J. A. PEGylated N-heterocyclic carbene anchors designed to stabilize gold nanoparticles in biologically relevant media. J. Am. Chem. Soc. 137, 7974–7977 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Nguyen, D. T. et al. An arylazopyrazole-based N-heterocyclic carbene as a photoswitch on gold surfaces: light-switchable wettability, work function, and conductance. Angew. Chem. Int. Ed. 59, 13651–13656 (2020).

    Article  CAS  Google Scholar 

  77. Nguyen, D. T. et al. Versatile micropatterns of N-heterocyclic carbenes on gold surfaces: increased thermal and pattern stability with enhanced conductivity. Angew. Chem. Int. Ed. 57, 11465–11469 (2018).

    Article  CAS  Google Scholar 

  78. She, Z. et al. N-Heterocyclic carbene and thiol micropatterns enable the selective deposition and transfer of copper films. Chem. Commun. 56, 1275–1278 (2020).

    Article  CAS  Google Scholar 

  79. Zhukhovitskiy, A. V. et al. Reactions of persistent carbenes with hydrogen-terminated silicon surfaces. J. Am. Chem. Soc. 138, 8639–8652 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Franz, M. et al. Controlled growth of ordered monolayers of N-heterocyclic carbenes on silicon. Nat. Chem. https://doi.org/10.1038/s41557-021-00721-2 (2021).

    Article  PubMed  Google Scholar 

  81. Nesterov, V. et al. NHCs in main group chemistry. Chem. Rev. 118, 9678–9842 (2018). General and comprehensive review on the utilization of NHCs with main group elements.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, Y. & Robinson, G. H. N-Heterocyclic carbene-main-group chemistry: A rapidly evolving field. Inorg. Chem. 53, 11815–11832 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Kim, Y. & Lee, E. Stable organic radicals derived from N-heterocyclic carbenes. Chem. Eur. J. 24, 19110–19121 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Martin, C. D., Soleilhavoup, M. & Bertrand, G. Carbene-stabilized main group radicals and radical ions. Chem. Sci. 4, 3020–3030 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Martin, D., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for transition metal centers. Chem. Sci. 2, 389–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Weetman, C. & Inoue, S. The road travelled: after main-group elements as transition metals. ChemCatChem 10, 4213–4228 (2018).

    Article  CAS  Google Scholar 

  88. Ochiai, T., Franz, D. & Inoue, S. Applications of N-heterocyclic imines in main group chemistry. Chem. Soc. Rev. 45, 6327–6344 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Doddi, A., Peters, M. & Tamm, M. N-Heterocyclic carbene adducts of main group elements and their use as ligands in transition metal chemistry. Chem. Rev. 119, 6994–7112 (2019). Up-to-date review article dealing with NHC–main group elements adducts and their use as ligands.

    Article  CAS  PubMed  Google Scholar 

  90. Bissinger, P. et al. Boron as a powerful reductant: Synthesis of a stable boron-centered radical-anion radical-cation pair. Angew. Chem. Int. Ed. 54, 359–362 (2015).

    Article  CAS  Google Scholar 

  91. Back, J. et al. Triazenyl radicals stabilized by N-heterocyclic carbenes. J. Am. Chem. Soc. 139, 15300–15303 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Siddiqui, M. M. et al. Isolation of transient acyclic germanium(I) radicals stabilized by cyclic alkyl(amino) carbenes. J. Am. Chem. Soc. 141, 1908–1912 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Mahoney, J. K. et al. Air-persistent monomeric (amino)(carboxy) radicals derived from cyclic (alkyl)(amino) carbenes. J. Am. Chem. Soc. 137, 7519–7525 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Antoni, P. W. & Hansmann, M. M. Pyrylenes: a new class of tunable, redox-switchable, photoexcitable pyrylium-carbene hybrids with three stable redox-states. J. Am. Chem. Soc. 140, 14823–14835 (2018).

    Article  PubMed  CAS  Google Scholar 

  95. Gallagher, N. M. et al. An N-heterocyclic-carbene-derived distonic radical cation. Angew. Chem. Int. Ed. 59, 3952–3955 (2020).

    Article  CAS  Google Scholar 

  96. Dahcheh, F., Martin, D., Stephan, D. W. & Bertrand, G. Synthesis and reactivity of a CAAC–aminoborylene adduct: A hetero-allene or an organoboron isoelectronic with singlet carbenes. Angew. Chem. Int. Ed. 53, 13159–13163 (2014).

    Article  CAS  Google Scholar 

  97. Wang, Y. et al. Stabilization of elusive silicon oxides. Nat. Chem. 7, 509–513 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, Y. et al. Stabilization of silicon–carbon mixed oxides. J. Am. Chem. Soc. 137, 8396–8399 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Bag, P., Porzelt, A., Altmann, P. J. & Inoue, S. A stable neutral compound with an aluminum–aluminum double bond. J. Am. Chem. Soc. 139, 14384–14387 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Bellemin-Laponnaz, S. & Dagorne, S. Group 1 and 2 and early transition metal complexes bearing N-heterocyclic carbene ligands: Coordination chemistry, reactivity, and applications. Chem. Rev. 114, 8747–8774 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Arrowsmith, M. et al. Neutral zero-valent s-block complexes with strong multiple bonding. Nat. Chem. 8, 890–894 (2016).

    Article  CAS  Google Scholar 

  102. Melen, R. L. Frontiers in molecular p-block chemistry: From structure to reactivity. Science 363, 479–484 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Légaré, M. A., Pranckevicius, C. & Braunschweig, H. Metallomimetic chemistry of boron. Chem. Rev. 119, 8231–8261 (2019).

    Article  PubMed  CAS  Google Scholar 

  104. Naumann, S. & Buchmeiser, M. R. Liberation of N-heterocyclic carbenes (NHCs) from thermally labile progenitors: protected NHCs as versatile tools in organo- and polymerization catalysis. Catal. Sci. Technol. 4, 2466–2479 (2014).

    Article  CAS  Google Scholar 

  105. Eichhorn, A. F., Fuchs, S., Flock, M., Marder, T. B. & Radius, U. Reversible oxidative addition at carbon. Angew. Chem. Int. Ed. 56, 10209–10213 (2017).

    Article  CAS  Google Scholar 

  106. Teator, A. J., Tian, Y., Chen, M., Lee, J. K. & Bielawski, C. W. An isolable, photoswitchable N-heterocyclic carbene: on-demand reversible ammonia activation. Angew. Chem. Int. Ed. 54, 11559–11563 (2015).

    Article  CAS  Google Scholar 

  107. Légaré, M. A. et al. Nitrogen fixation and reduction at boron. Science 359, 896–900 (2018).

    Article  PubMed  CAS  Google Scholar 

  108. Légaré, M. A. et al. The reductive coupling of dinitrogen. Science 363, 1329–1332 (2019).

    Article  PubMed  CAS  Google Scholar 

  109. Légaré, M. A. et al. One-pot, room-temperature conversion of dinitrogen to ammonium chloride at a main-group element. Nat. Chem. 12, 1076–1080 (2020).

    Article  PubMed  CAS  Google Scholar 

  110. Kuhn, N., Bohnen, H., Kreutzberg, J., Bläser, D. & Boese, R. 1,3,4,5-Tetramethyl-2-methyleneimidazoline — An ylidic olefin. J. Chem. Soc., Chem. Commun. 1136-1137 (1993).

  111. Naumann, S. Synthesis, properties & applications of N-heterocyclic olefins in catalysis. Chem. Commun. 55, 11658–11670 (2019).

    Article  CAS  Google Scholar 

  112. Roy, M. M. D. & Rivard, E. Pushing chemical boundaries with N-heterocyclic olefins (NHOs): from catalysis to main group element chemistry. Acc. Chem. Res. 50, 2017–2025 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Fürstner, A., Alcarazo, M., Goddard, R. & Lehmann, C. W. Coordination chemistry of ene-1,1-diamines and a prototype “carbodicarbene”. Angew. Chem. Int. Ed. 47, 3210–3214 (2008).

    Article  CAS  Google Scholar 

  114. Wang, Y.-B., Wang, Y.-M., Zhang, W.-Z. & Lu, X.-B. Fast CO2 sequestration, activation, and catalytic transformation using N-heterocyclic olefins. J. Am. Chem. Soc. 135, 11996–12003 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Kaya, U., Tran, U. P. N., Enders, D., Ho, J. & Nguyen, T. V. N-Heterocyclic olefin catalyzed silylation and hydrosilylation reactions of hydroxyl and carbonyl compounds. Org. Lett. 19, 1398–1401 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Hering-Junghans, C., Watson, I. C., Ferguson, M. J., McDonald, R. & Rivard, E. Organocatalytic hydroborylation promoted by N-heterocyclic olefins. Dalton Trans. 46, 7150–7153 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Naumann, S., Thomas, A. W. & Dove, A. P. N-Heterocyclic olefins as organocatalysts for polymerization: preparation of well-defined poly(propylene oxide). Angew. Chem. Int. Ed. 54, 9550–9554 (2015).

    Article  CAS  Google Scholar 

  118. Dyker, C. A., Lavallo, V., Donnadieu, B. & Bertrand, G. Synthesis of an extremely bent acyclic allene (a “carbodicarbene”): a strong donor ligand. Angew. Chem. Int. Ed. 47, 3206–3209 (2008).

    Article  CAS  Google Scholar 

  119. Hsu, Y. C. et al. One-pot tandem photoredox and cross-coupling catalysis with a single palladium carbodicarbene complex. Angew. Chem. Int. Ed. 57, 4622–4626 (2018).

    Article  CAS  Google Scholar 

  120. Wu, X. & Tamm, M. Transition metal complexes supported by highly basic imidazolin-2-iminato and imidazolin-2-imine N-donor ligands. Coord. Chem. Rev. 260, 116–138 (2014).

    Article  CAS  Google Scholar 

  121. Mehlmann, P., Witteler, T., Wilm, L. F. B. & Dielmann, F. Isolation, characterization and reactivity of three-coordinate phosphorus dications isoelectronic to alanes and silylium cations. Nat. Chem. 11, 1139–1143 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. Engl. 18, 239–258 (1979).

    Article  Google Scholar 

  123. Breslow, R. On the mechanism of thiamine action. IV.1 Evidence from studies on model systems. J. Am. Chem. Soc. 80, 3719–3726 (1958).

    Article  CAS  Google Scholar 

  124. Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115, 9307–9387 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bugaut, X. & Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev. 41, 3511–3522 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Hopkinson, M. N. et al. N-Heterocyclic Carbenes in Organocatalysis (Wiley-VCH, 2018).

  128. Menon, R. S., Biju, A. T. & Nair, V. Recent advances in employing homoenolates generated by N-heterocyclic carbene (NHC) catalysis in carbon–carbon bond-forming reactions. Chem. Soc. Rev. 44, 5040–5052 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Ohmiya, H. N-Heterocyclic carbene-based catalysis enabling cross-coupling reactions. ACS Catal. 10, 6862–6869 (2020).

    Article  CAS  Google Scholar 

  130. Ishii, T., Nagao, K. & Ohmiya, H. Recent advances in N-heterocyclic carbene-based radical catalysis. Chem. Sci. 11, 5630–5636 (2020). Recent review on the last advances of NHCs in radical and dual catalytic processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, M. H. & Scheidt, K. A. Cooperative catalysis and activation with N-heterocyclic carbenes. Angew. Chem. Int. Ed. 55, 14912–14922 (2016).

    Article  CAS  Google Scholar 

  132. Murauski, K. J. R., Jaworski, A. A. & Scheidt, K. A. A continuing challenge: N-heterocyclic carbene-catalyzed syntheses of γ-butyrolactones. Chem. Soc. Rev. 47, 1773–1782 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Raup, D. E. A., Cardinal-David, B., Holte, D. & Scheidt, K. A. Cooperative catalysis by carbenes and Lewis acids in a highly stereoselective route to γ-lactams. Nat. Chem. 2, 766–771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhuo, S. et al. Access to all-carbon spirocycles through a carbene and thiourea cocatalytic desymmetrization cascade reaction. Angew. Chem. Int. Ed. 58, 1784–1788 (2019).

    Article  CAS  Google Scholar 

  135. Zhao, X., DiRocco, D. A. & Rovis, T. N-Heterocyclic carbene and Brønsted acid cooperative catalysis: asymmetric synthesis of trans-γ-lactams. J. Am. Chem. Soc. 133, 12466–12469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Singha, S., Serrano, E., Mondal, S., Daniliuc, C. G. & Glorius, F. Diastereodivergent synthesis of enantioenriched α,β-disubstituted γ-butyrolactones via cooperative N-heterocyclic carbene and Ir catalysis. Nat. Catal. 3, 48–54 (2020).

    Article  CAS  Google Scholar 

  137. Nagao, K. & Ohmiya, H. N-Heterocyclic carbene (NHC)/metal cooperative catalysis. Top. Curr. Chem. 377, 35 (2019).

    Article  CAS  Google Scholar 

  138. Yasuda, S., Ishii, T., Takemoto, S., Haruki, H. & Ohmiya, H. Synergistic N-heterocyclic carbene/palladium-catalyzed reactions of aldehyde acyl anions with either diarylmethyl or allylic carbonates. Angew. Chem. Int. Ed. 57, 2938–2942 (2018).

    Article  CAS  Google Scholar 

  139. Guo, C., Fleige, M., Janssen-Müller, D., Daniliuc, C. G. & Glorius, F. Cooperative N-heterocyclic carbene/palladium-catalyzed enantioselective umpolung annulations. J. Am. Chem. Soc. 138, 7840–7843 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Liu, K., Hovey, M. T. & Scheidt, K. A. A cooperative N-heterocyclic carbene/palladium catalysis system. Chem. Sci. 5, 4026–4031 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Guo, C. et al. Mechanistic studies on a cooperative NHC organocatalysis/palladium catalysis system: uncovering significant lessons for mixed chiral Pd(NHC)(PR3) catalyst design. J. Am. Chem. Soc. 139, 4443–4451 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Singha, S., Patra, T., Daniliuc, C. G. & Glorius, F. Highly enantioselective [5 + 2] annulations through cooperative N-heterocyclic carbene (NHC) organocatalysis and palladium catalysis. J. Am. Chem. Soc. 140, 3551–3554 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Huang, H.-M., Bellotti, P., Ma, J., Dalton, T. & Glorius, F. Bifunctional reagents in organic synthesis. Nat. Rev. Chem. 5, 301–321 (2021).

    Article  CAS  Google Scholar 

  144. Mavroskoufis, A., Jakob, M. & Hopkinson, M. N. Light-promoted organocatalysis with N-heterocyclic carbenes. ChemPhotoChem 4, 5147–5153 (2020).

    Article  CAS  Google Scholar 

  145. Liu, Q. & Chen, X.-Y. Dual N-heterocyclic carbene/photocatalysis: a new strategy for radical processes. Org. Chem. Front. 7, 2082–2087 (2020).

    Article  CAS  Google Scholar 

  146. Zhao, K. & Enders, D. Merging N-heterocyclic carbene catalysis and single electron transfer: a new strategy for asymmetric transformations. Angew. Chem. Int. Ed. 56, 3754–3756 (2017).

    Article  CAS  Google Scholar 

  147. Mavroskoufis, A. et al. N-Heterocyclic carbene catalyzed photoenolization/Diels–Alder reaction of acid fluorides. Angew. Chem. Int. Ed. 59, 3190–3194 (2020).

    Article  CAS  Google Scholar 

  148. Guin, J., De Sarkar, S., Grimme, S. & Studer, A. Biomimetic carbene-catalyzed oxidations of aldehydes using TEMPO. Angew. Chem. Int. Ed. 47, 8727–8730 (2008).

    Article  CAS  Google Scholar 

  149. White, N. A. & Rovis, T. Oxidatively initiated NHC-catalyzed enantioselective synthesis of 3,4-disubstituted cyclopentanones from enals. J. Am. Chem. Soc. 137, 10112–10115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. White, N. A. & Rovis, T. Enantioselective N-heterocyclic carbene-catalyzed β-hydroxylation of enals using nitroarenes: an atom transfer reaction that proceeds via single electron transfer. J. Am. Chem. Soc. 136, 14674–14677 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang, Y. et al. N-Heterocyclic carbene-catalyzed radical reactions for highly enantioselective β-hydroxylation of enals. J. Am. Chem. Soc. 137, 2416–2419 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Ishii, T., Kakeno, Y., Nagao, K. & Ohmiya, H. N-Heterocyclic carbene-catalyzed decarboxylative alkylation of aldehydes. J. Am. Chem. Soc. 141, 3854–3858 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Ishii, T., Ota, K., Nagao, K. & Ohmiya, H. N-Heterocyclic carbene-catalyzed radical relay enabling vicinal alkylacylation of alkenes. J. Am. Chem. Soc. 141, 14073–14077 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Davies, A. V., Fitzpatrick, K. P., Betori, R. C. & Scheidt, K. A. Combined photoredox and carbene catalysis for the synthesis of ketones from carboxylic acids. Angew. Chem. Int. Ed. 59, 9143–9148 (2020).

    Article  CAS  Google Scholar 

  155. Bayly, A. A., McDonald, B. R., Mrksich, M. & Scheidt, K. A. High-throughput photocapture approach for reaction discovery. Proc. Natl Acad. Sci. USA 117, 13261–13266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yang, W., Hu, W., Dong, X., Li, X. & Sun, J. N-Heterocyclic carbene catalyzed γ-dihalomethylenation of enals by single-electron transfer. Angew. Chem. Int. Ed. 55, 15783–15786 (2016).

    Article  CAS  Google Scholar 

  157. Dai, L., Xia, Z.-H., Gao, Y.-Y., Gao, Z.-H. & Ye, S. Visible-light-driven N-heterocyclic carbene catalyzed γ- and ϵ-alkylation with alkyl radicals. Angew. Chem. Int. Ed. 58, 18124–18130 (2019).

    Article  CAS  Google Scholar 

  158. Meng, Q.-Y., Döben, N. & Studer, A. Cooperative NHC and photoredox catalysis for the synthesis of β-trifluoromethylated alkyl aryl ketones. Angew. Chem. Int. Ed. 59, 19956–19960 (2020).

    Article  CAS  Google Scholar 

  159. Peris, E. Smart N-heterocyclic carbene ligands in catalysis. Chem. Rev. 118, 9988–10031 (2018). General review on the use of NHC ligands to generate ‘smart’ catalytic systems.

    Article  CAS  PubMed  Google Scholar 

  160. Gómez-Suárez, A., Nelson, D. J. & Nolan, S. P. Quantifying and understanding the steric properties of N-heterocyclic carbenes. Chem. Commun. 53, 2650–2660 (2017).

    Article  CAS  Google Scholar 

  161. Tolman, C. A. Electron donor-acceptor properties of phosphorus ligands. Substituent additivity. J. Am. Chem. Soc. 92, 2953–2956 (1970).

    Article  CAS  Google Scholar 

  162. Chianese, A. R., Li, X., Janzen, M. C., Faller, J. W. & Crabtree, R. H. Rhodium and iridium complexes of N-heterocyclic carbenes via transmetalation:  structure and dynamics. Organometallics 22, 1663–1667 (2003).

    Article  CAS  Google Scholar 

  163. Huynh, H. V., Han, Y., Jothibasu, R. & Yang, J. A. 13C NMR spectroscopic determination of ligand donor strengths using N-heterocyclic carbene complexes of palladium(II). Organometallics 28, 5395–5404 (2009).

    Article  CAS  Google Scholar 

  164. Hillier, A. C. et al. A combined experimental and theoretical study examining the binding of N-heterocyclic carbenes (NHC) to the Cp*RuCl (Cp* = η5-C5Me5) moiety: insight into stereoelectronic differences between unsaturated and saturated NHC ligands. Organometallics 22, 4322–4326 (2003).

    Article  CAS  Google Scholar 

  165. Eijkman, C. Eine Beri Beri-ähnliche Krankheit der Hühner. Arch. Pathol. Anat. 148, 523–532 (1897).

    Article  Google Scholar 

  166. Zhou, Z.H., McCarthy, D.B., O’Connor, C.M., Reed, L.J. and Stoops, J.K. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc. Natl Acad. Sci. USA 98, 14802–14807 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Patel, M. S., Nemeria, N. S., Furey, W. & Jordan, F. The pyruvate dehydrogenase complexes: Structure-based function and regulation. J. Biol. Chem. 289, 16615–16623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kern, D. et al. How thiamine diphosphate is activated in enzymes. Science 275, 67–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  169. Biju, A. T. N-Heterocyclic Carbenes in Organocatalysis (Wiley-VCH, 2019). Comprehensive book on NHCs in organocatalytic processes.

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (SFB 858, Leibniz Award) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

P.B., M.K., M.N.H. and F.G. jointly contributed to all aspects of the manuscript.

Corresponding authors

Correspondence to Matthew N. Hopkinson or Frank Glorius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks M. Albrecht and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

HOMO

Highest occupied molecular orbital. Its energy defines the overall nucleophilic character of the species.

LUMO

Lowest unoccupied molecular orbital. Its energy defines the overall electrophilic character of the species.

Remote carbenes

N-Heterocyclic carbenes in which the carbene atom is not directly adjacent to any heteroatom.

CAACs

Cyclic (alkyl)(amino)carbenes. Cyclic species that possess a single nitrogen and a sp3-hybridized carbon adjacent to the singlet carbene centre.

Mesoionic carbenes

Special class of N-heterocyclic carbenes bearing both negative and positive delocalized charges, which can be neither satisfactorily represented by a totally covalent nor by a single polar structure.

DACs

N,N′-diamidocarbenes. N-Heterocyclic carbene species that features two carbonyl amido groups within the cyclic structure.

Schrock carbenes

Classification of carbenes binding to a metal, characterized by strong donation towards a high-oxidation-state metal, preferentially an early transition metal in the presence of π-donor ligands. The typical decoration of the carbene carbon involves hydrogen or alkyl substitution.

Fischer carbenes

Classification of carbenes binding to a metal, characterized by enhanced electrophilic character towards a low-oxidation-state metal, preferentially a middle or late transition metal in the presence of π-accepting ligands. The typical decoration of the carbene carbon involves a π-donating substituent (e.g. alkoxy, alkylamino).

Backbonding

The π-electron donation from a metal centre to an empty orbital of appropriate symmetry of the ligand (also known as π-back-donation).

Umpolung

The reversal of the intrinsic polarity of a functional group within a synthetic method.

Breslow intermediate

Key enaminol intermediate originating from the nucleophilic attack of an N-heterocyclic carbene onto a carbonyl, followed by proton transfer. The Breslow intermediate possesses nucleophilic character at the once-aldehydic carbon.

Ketyl radical

Radical anion species formed by single-electron reduction of a ketone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellotti, P., Koy, M., Hopkinson, M.N. et al. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat Rev Chem 5, 711–725 (2021). https://doi.org/10.1038/s41570-021-00321-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00321-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing