Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diamidocarbenes as versatile and reversible [2 + 1] cycloaddition reagents

Abstract

We describe the synthesis of a variety of cyclopropanes and epoxides by combining a readily accessible and isolable N,N′-diamidocarbene with a range of structurally and electronically diverse olefins and aldehydes, including electron-rich derivatives. Surprisingly, the cyclopropanation and epoxidation reactions were discovered to be rapid and thermally reversible at relatively low temperatures, two features often desired for applications that utilize dynamic covalent chemistry. In addition, a diamidocyclopropane derivative prepared via this method was hydrolysed successfully to form the corresponding linear carboxylic acid in a metal- and carbon monoxide-free hydrocarboxylation reaction. As such, diamidocarbenes are expected to find utility in the synthesis of cyclopropanes, epoxides and their derivatives, as well as in dynamic covalent chemistry applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of isolable carbenes that may be used as [2 + 1] cycloaddition reagents.
Figure 2: X-ray structures of the [2 + 1] cycloaddition products 2e and 2m.
Figure 3: Stereospecificity of the [2 + 1] cycloaddition with 1 and the formation of a linear carboxylic acid.
Figure 4: Formal [4 + 1] cycloadditions of DAC 1 with α,β-unsaturated ketones and acrolein and [2 + 1] cycloadditions with aldehydes.
Figure 5: Reversible [2 + 1] cycloadditions involving 1.

Similar content being viewed by others

References

  1. Reissig, H-U. & Zimmer, R. Donor–acceptor-substituted cyclopropane derivatives and their application in organic synthesis. Chem. Rev. 103, 1151–1196 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. McGarrigle, E. M. & Gilheany, D. G. Chromium- and manganese-salen promoted epoxidation of alkenes. Chem. Rev. 105, 1563–1602 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Carson, C. A. & Kerr, M. A. Heterocycles from cyclopropanes: applications in natural product synthesis. Chem. Soc. Rev. 38, 3051–3060 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Wessjohann, L. A. & Brandt, W. Biosynthesis and metabolism of cyclopropane rings in natural products. Chem. Rev. 103, 1625–1647 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Marco-Contelles, J., Molina, M. T. & Anjum, S. Naturally occurring cyclohexane epoxides: sources, biological activities, and synthesis. Chem. Rev. 104, 2857–2899 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Rademacher, P. Photoelectron spectra of cyclopropane and cyclopropene compounds. Chem. Rev. 103, 933–975 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Herges, R. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106, 4820–4842 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Lebel, H., Marcoux, J-F., Molinaro, C. & Charette, A. B. Stereoselective cyclopropanation reactions. Chem. Rev. 103, 977–1050 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Pellissier, H. Recent developments in asymmetric cyclopropanation. Tetrahedron 64, 7041–7095 (2008).

    Article  CAS  Google Scholar 

  10. Moss, R. A. in Carbene Chemistry (ed. Bertrand, G.) 57–101 (Marcel Dekker, 2002).

    Google Scholar 

  11. Jones, M. Jr & Moss, R. A. in Reactive Intermediate Chemistry (eds Moss, R. A., Platz, M. S. & Jones, M. Jr) Ch. 7, 273–328 (Wiley-Interscience, 2004).

    Google Scholar 

  12. Cheng, Y. & Meth-Cohn, O. Heterocycles derived from heteroatom-substituted carbenes. Chem. Rev. 104, 2507–2530 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J., Burdzinski, G., Kubicki, J. & Platz, M. S. Ultrafast UV-vis and IR studies of p-biphenylyl acetyl and carbomethoxy carbenes. J. Am. Chem. Soc. 130, 11195–11209 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y., Kubicki, J. & Platz, M. S. Ultrafast UV-visible and infrared spectroscopic observation of a singlet vinylcarbene and the intramolecular cyclopropenation reaction. J. Am. Chem. Soc. 131, 13602–13603 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Baceiredo, A., Bertrand, G. & Sicard, G. Synthesis of the first α-diazo phosphines. Phosphorous–carbon multiple-bond character of phosphinocarbenes. J. Am. Chem. Soc. 107, 4781–4783 (1985).

    Article  CAS  Google Scholar 

  16. Igau, A., Baceiredo, A., Trinquier, G. & Bertrand, G. [Bis(diisopropylamino)phosphino]trimethylsilylcarbene: a stable nucleophilic carbene. Angew. Chem. Int. Ed. 28, 621–622 (1989).

    Article  Google Scholar 

  17. Khramov, D. M., Rosen, E. L., Lynch, V. M. & Bielawski, C. W. Diaminocarbene[3]ferrocenophanes and their transition-metal complexes. Angew. Chem. Int. Ed. 47, 2267–2270 (2008).

    Article  CAS  Google Scholar 

  18. Lavallo, V. et al. Synthesis, reactivity, and ligand properties of a stable alkyl carbene. J. Am. Chem. Soc. 126, 8670–8671 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Siemeling, U. et al. N-heterocyclic carbenes which readily add ammonia, carbon monoxide and other small molecules. Chem. Sci. 1, 697–704 (2010).

    Article  CAS  Google Scholar 

  20. Vignolle, J., Cattoën, X. & Bourissou, D. Stable noncyclic singlet carbenes. Chem. Rev. 109, 3333–3384 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Dröge, T. & Glorius, F. The measure of all rings – N-heterocyclic carbenes. Angew. Chem. Int. Ed. 49, 6940–6952 (2010).

    Article  CAS  Google Scholar 

  22. Melami, M., Soleilhavoup, M. & Bertrand, G. Stable cyclic carbenes and related species beyond diaminocarbenes. Angew. Chem. Int. Ed. 49, 8810–8849 (2010).

    Article  CAS  Google Scholar 

  23. Martin, D., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for transition metal centers. Chem. Sci. 2, 389–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Enders, D. et al. Preparation, structure, and reactivity of 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene, a new stable carbene. Angew. Chem. Int. Ed. 34, 1021–1023 (1995).

    Article  CAS  Google Scholar 

  25. Goumri-Magnet, S., Kato, T., Gornitzka, H., Baceiredo, A. & Bertrand, G. Stereoselectivity and stereospecificity of cyclopropanation reactions with stable (phosphanyl)(silyl)carbenes. J. Am. Chem. Soc. 122, 4464–4470 (2000).

    Article  CAS  Google Scholar 

  26. Krysiak, J. et al. The first asymmetric cyclopropanation reactions involving a stable carbene. J. Org. Chem. 66, 8240–8242 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Krysiak, J. et al. Stable optically pure phosphino(silyl)carbenes: reagents for highly enantioselective cyclopropanation reactions. Chem. Eur. J. 10, 1982–1986 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Martin, D. et al. Theoretical and experimental investigation of the basicity of phosphino(silyl)carbenes. J. Org. Chem. 70, 5671–5677 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Illa, O., Álvarez-Larena, Á., Baceiredo, A., Branchadell, V. & Ortuño, R. M. Highly stereoselective and easy synthesis of enantiopure phosphoranyl oxiranes. Tetrahedron: Asymmetry 18, 2617–2620 (2007).

    Article  CAS  Google Scholar 

  30. Illa, O., Bagan, X., Baceiredo, A., Branchadell, V. & Ortuño, R. M. Understanding the π-facial diastereoselectivity in the addition of chiral diaminophosphino(silyl)carbenes to activated olefins. Tetrahedron: Asymmetry 19, 2353–2358 (2008).

    Article  CAS  Google Scholar 

  31. Hudnall, T. W. & Bielawski, C. W. An N,N′-diamidocarbene: studies in C–H insertion, reversible carbonylation, and transition-metal coordination chemistry. J. Am. Chem. Soc. 131, 16039–16041 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. César, V., Lugan, N. & Lavigne, G. Reprogramming of a malonic N-heterocyclic carbene: a simple backbone modification with dramatic consequences on the ligand's donor properties. Eur. J. Inorg. Chem. 361–365 (2010).

  33. Hudnall, T. W., Moorhead, E. J., Gusev, D. G. & Bielawski, C. W. N,N′-diamidoketenimines via coupling of isocyanides to an N-heterocyclic carbene. J. Org. Chem. 75, 2763–2766 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Hudnall, T. W., Moerdyk, J. P. & Bielawski, C. W. Ammonia N–H activation by a N,N′-diamidocarbene. Chem. Commun. 46, 4288–4290 (2010).

    Article  CAS  Google Scholar 

  35. Braun, M., Frank, W., Reiss, G. J. & Ganter, C. An N-heterocyclic carbene with an oxalamide backbone. Organometallics 29, 4418–4420 (2010).

    Article  CAS  Google Scholar 

  36. Hobbs, M. G. et al. The influence of electron delocalization upon the stability and structure of potential N-heterocyclic carbene precursors with 1,3-diaryl-imidazolidine-4,5-dione skeletons. New J. Chem. 34, 1295–1308 (2010).

    Article  CAS  Google Scholar 

  37. Hudnall, T. W., Tennyson, A. G. & Bielawski, C. W. A seven-membered N,N′-diamidocarbene. Organometallics 29, 4569–4578 (2010).

    Article  CAS  Google Scholar 

  38. Moerdyk, J. P. & Bielawski, C. W. Olefin metathesis catalysts containing N,N′-diamidocarbenes. Organometallics 30, 2278–2284 (2011).

    Article  CAS  Google Scholar 

  39. Wasserman, H. H., Clark, G. M. & Turley, P. C. Recent aspects of cyclopropanone chemistry. Top. Curr. Chem. 47, 73–156 (1974).

    CAS  Google Scholar 

  40. Olah, G. A. & Molnar, Á. In Hydrocarbon Chemistry (ed. Lagowski, J. J.) Ch. 7, 371–395 (Wiley-Interscience, 2003).

    Book  Google Scholar 

  41. Linstead, R. P. & Whalley, M. Conjugated macrocycles. Part XXII. Tetrazaporphin and its metallic derivatives. J. Chem. Soc. 4839–4846 (1952).

  42. Moss, R. A. & Huselton, J. K. Dimethoxycarbene: stereospecificity in the additions of a nucleophilic carbene to β-deuteriostyrenes. J. Chem. Soc. Chem. Commun. 950–951 (1976).

  43. Mendez, F. & Garcia-Garibay, M. A. A hard–soft acid–base and DFT analysis of singlet–triplet gaps and the addition of singlet carbenes to alkenes. J. Org. Chem. 64, 7061–7066 (1999).

    Article  CAS  Google Scholar 

  44. Lecea, B. et al. Theoretical study on the mechanism of the [2+1] thermal cycloaddition between alkenes and stable singlet (phosphino)(silyl)carbenes. J. Org. Chem. 72, 357–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Mukai, T., Nakazawa, T. & Isobe, K. Thermal decomposition of troponetosylhydrazone. Tetrahedron Lett. 565–569 (1968).

  46. Jones, W. M., Hamon, B. N., Joines, R. C. & Ennis, C. L. Stereochemistry of the addition of cycloheptatrienylidene to electron deficient double bonds. Tetrahedron Lett. 3909–3912 (1969).

  47. Hamaguchi, M., Matsubara, H. & Nagai, T. Reaction of vinylcarbenoids with benzaldehydes: formation of vinylcarbonyl ylides followed by ring closure to oxiranes and dihydrofurans. J. Org. Chem. 66, 5395–5404 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Dolbier, W. R. Jr & Battiste, M. A. Structure, synthesis, and chemical reactions of fluorinated cyclopropanes and cyclopropenes. Chem. Rev. 103, 1071–1098 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Lehn, J-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Hunt, R. A. R. & Otto, S. Dynamic combinatorial libraries: new opportunities in systems chemistry. Chem. Commun. 47, 847–858 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Science Foundation (CHE-0645563), the Robert A. Welch Foundation (F-1621) and the Sloan Foundation for their support.

Author information

Authors and Affiliations

Authors

Contributions

C.W.B. and J.P.M. conceived and designed the experiments, and co-wrote the paper. J.P.M. performed the experiments and analysed the data. Both authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Christopher W. Bielawski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10243 kb)

Supplementary information

Crystallographic data for compound 2e. (CIF 19 kb)

Supplementary information

Crystallographic data for compound 2j. (CIF 20 kb)

Supplementary information

Crystallographic data for compound 2k. (CIF 35 kb)

Supplementary information

Crystallographic data for compound 2m. (CIF 17 kb)

Supplementary information

Crystallographic data for compound 2o. (CIF 32 kb)

Supplementary information

Crystallographic data for compound 3a. (CIF 18 kb)

Supplementary information

Crystallographic data for compound 4b. (CIF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moerdyk, J., Bielawski, C. Diamidocarbenes as versatile and reversible [2 + 1] cycloaddition reagents. Nature Chem 4, 275–280 (2012). https://doi.org/10.1038/nchem.1267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing