Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis

Abstract

Some members of the inhibitor of apoptosis (IAP) protein family block apoptosis by binding to and neutralizing active caspases. We recently demonstrated that a physical association between IAP and caspases alone is insufficient to regulate caspases in vivo and that an additional level of control is provided by IAP-mediated ubiquitination of both itself and the associated caspases1. Here we show that Drosophila IAP 1 (DIAP1) is degraded by the 'N-end rule' pathway and that this process is indispensable for regulating apoptosis. Caspase-mediated cleavage of DIAP1 at position 20 converts the more stable pro-N-degron of DIAP1 into the highly unstable, Asn-bearing, DIAP1 N-degron of the N-end rule degradation pathway. Thus, DIAP1 represents the first known metazoan substrate of the N-end rule pathway that is targeted for degradation through its amino-terminal Asn residue. We demonstrate that the N-end rule pathway is required for regulation of apoptosis induced by Reaper and Hid expression in the Drosophila melanogaster eye. Our data suggest that DIAP1 instability, mediated through caspase activity and subsequent exposure of the N-end rule pathway, is essential for suppression of apoptosis. We suggest that DIAP1 safeguards cell viability through the coordinated mutual destruction of itself and associated active caspases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DIAP1 is N-terminally cleaved by caspases sensitive to p35 and z-VAD-FMK.
Figure 2: The effector caspases Dcp-1 and drICE cleave DIAP1 in vitro and in vivo.
Figure 3: Degradation of Asn-DIAP1(21–438) is mediated by the N-end rule pathway.
Figure 4: N-end-rule-mediated DIAP1 degradation is essential for regulation of apoptosis.

Similar content being viewed by others

References

  1. Wilson, R. et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nature Cell Biol. 4, 445–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez, A., Chen, P., Oliver, H. & Abrams, J.M. Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, Dark. EMBO J. 21, 2189–2197 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154, 669–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, S.L., Hawkins, C.J., Yoo, S.J., Muller, H.A. & Hay, B.A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589–597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoo, S.J. et al. Apoptosis inducers Hid, Rpr and Grim negatively regulate levels of the caspase inhibitor DIAP1 by distinct mechanisms. Nature Cell Biol. 4, 416–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Igaki, T., Yamamoto-Goto, Y., Tokushige, N., Kanda, H. & Miura, M. Down-regulation of DIAP1 triggers a novel Drosophila cell death pathway mediated by Dark and DRONC. J. Biol. Chem. 277, 23103–23106 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  9. Levy, F., Johnsson, N., Rumenapf, T. & Varshavsky, A. Using ubiquitin to follow the metabolic fate of a protein. Proc. Natl Acad. Sci. USA 93, 4907–4912 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varshavsky, A. Ubiquitin fusion technique and its descendants. Methods Enzymol. 327, 578–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Quinn, L.M. et al. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J. Biol. Chem. 275, 40416–40424 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Meier, P., Silke, J., Leevers, S.J. & Evan, G.I. The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19, 598–611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hawkins, C.J. et al. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J. Biol. Chem. 275, 27084–27093 (2000).

    CAS  PubMed  Google Scholar 

  15. Hawkins, C.J., Wang, S.L. & Hay, B.A. A cloning method to identify caspases and their regulators in yeast: Identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1. Proc. Natl Acad. Sci. USA 96, 2885–2890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaiser, W.J., Vucic, D. & Miller, L.K. The Drosophila inhibitor of apoptosis D-IAP1 suppresses cell death induced by the caspase drICE. FEBS Lett. 440, 243–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Hershko, A., Ciechanover, A. & Varshavsky, A. The ubiquitin system. Nature Med. 6, 1073–1081 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl Acad. Sci. USA 93, 12142–12149 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fenteany, G. & Schreiber, S.L. Lactacystin, proteasome function, and cell fate. J. Biol. Chem. 273, 8545–8548 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Sheng, J., Kumagai, A., Dunphy, W.G. & Varshavsky, A. Dissection of c-MOS degron. EMBO J. 21, 6061–6071 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ryoo, H.D., Bergmann, A., Gonen, H., Ciechanover, A. & Steller, H. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell Biol. 4, 432–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Kwon, Y.T. et al. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Mol. Cell. Biol. 20, 4135–4148 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grether, M.E., Abrams, J.M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Hay, B.A., Wassarman, D.A. & Rubin, G.M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. White, K., Tahaoglu, E. & Steller, H. Cell killing by the Drosophila gene reaper. Science 271, 805–807 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Kwon, Y.T., Xia, Z., Davydov, I.V., Lecker, S.H. & Varshavsky, A. Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3α) of the N-end rule pathway. Mol. Cell. Biol. 21, 8007–8021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie, Y. & Varshavsky, A. The E2–E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J. 18, 6832–6844 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rao, H., Uhlmann, F., Nasmyth, K. & Varshavsky, A. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955–959 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Sijts, A.J., Pilip, I. & Pamer, E.G. The Listeria monocytogenes-secreted p60 protein is an N-end rule substrate in the cytosol of infected cells. Implications for major histocompatibility complex class I antigen processing of bacterial proteins. J. Biol. Chem. 272, 19261–19268 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Mulder, L.C. & Muesing, M.A. Degradation of HIV-1 integrase by the N-end rule pathway. J. Biol. Chem. 275, 29749–29753 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA 98, 8662–8667 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, Y., Fang, S., Jensen, J.P., Weissman, A.M. & Ashwell, J.D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, H. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem. 275, 26661–26664 (2000).

    CAS  PubMed  Google Scholar 

  34. MacFarlane, M., Merrison, W., Bratton, S.B. & Cohen, G.M. Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J. Biol. Chem. 277, 36611–36616 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Olson, M.R. et al. Reaper is regulated by IAP-mediated ubiquitination. J. Biol. Chem. 278, 4028–4034 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Hu, S. & Yang, X. cIAP1 and cIAP2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J. Biol. Chem. 278, 10055–10060 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Tenev, T. et al. Perinuclear localization of the protein-tyrosine phosphatase SHP-1 and inhibition of epidermal growth factor-stimulated STAT1/3 activation in A431 cells. Eur. J. Cell Biol. 79, 261–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Tenev, T., Zachariou, A., Wilson, R., Paul, A. & Meier, P. Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO J. 21, 5118–5129 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. White for the generous gift of full-length anti-DIAP1 antibody, A. Varshavsky and F. Levy for the ubiquitin fusion construct, J. Abrams for the dark cDNA, H. Steller for GMR-rpr and GMR-hid fly strains and B. Seraphin for the TAP construct. We also thank members of the Downward and Isacke laboratories for helpful discussions and support. We also thank S. Schneider and D. Baker for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Meier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure

Figure S1. The caspase inhibiotor z-VAD-FMK does not impair RNAi. (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditzel, M., Wilson, R., Tenev, T. et al. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nat Cell Biol 5, 467–473 (2003). https://doi.org/10.1038/ncb984

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing