Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage

Abstract

Cell cycle checkpoints are signal transduction pathways activated after DNA damage to protect genomic integrity1. Dynamic spatiotemporal coordination is a vital, but poorly understood aspect, of these checkpoints. Here, we provide evidence for a strikingly different behaviour of Chk2 versus Nbs1, key mediators of the ataxia-telangiecatesia-mutated (ATM)-controlled checkpoint pathways induced by DNA double-strand breaks (DSBs)1,2. In live human cells with DSBs restricted to small sub-nuclear areas, Nbs1 was rapidly recruited to the damaged regions and underwent a dynamic exchange in the close vicinity of the DSB sites. In contrast, Chk2 continued to rapidly move throughout the entire nucleus, irrespective of DNA damage and including the DSB-free areas. Although phosphorylation of Chk2 by ATM occurred exclusively at the DSB sites, forced immobilization of Chk2 to spatially restricted, DSB-containing nuclear areas impaired its stimulating effect on p53-dependent transcription. These results unravel a dynamic nature of Nbs1 interaction with DSB lesions and identify Chk2 as a candidate transmitter of the checkpoint signal, allowing for a coordinated pan-nuclear response to focal DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sub-nuclear-restricted DSBs elicit a pan-nuclear Chk2 response.
Figure 2: ATM-phosphorylated Nbs1 accumulates exclusively on the sites of DSBs.
Figure 3: Rapid movement of the Chk2 protein in vivo.
Figure 4: Dynamic interaction of Nbs1 with the sites of DSB in vivo.

Similar content being viewed by others

References

  1. Rouse, J. & Jackson, S.P. Interface between the detection, signaling, and repair of DNA damage. Science 297, 547–551 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Bartek, J., Falck, J. & Lukas, J. CHK2 kinase — a busy messenger. Nature Rev. Mol. Cell Biol. 2, 877–886 (2001).

    Article  CAS  Google Scholar 

  3. Limoli, C.L. & Ward, J.F. A new method for introducing double-strand breaks into cellular DNA. Radiat. Res. 13, 160–169 (1993).

    Article  Google Scholar 

  4. Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Falck, J., Petrini, J.H., Williams, B.R., Lukas, J. & Bartek, J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nature Genet. 30, 290–294 (2002).

    Article  PubMed  Google Scholar 

  7. Falck, J., Mailand, N., Syljuasen, R.G., Bartek, J. & Lukas, J. The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistent DNA synthesis. Nature 410, 842–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Ward, I.M., Wu, X. & Chen, J. Threonine 68 of Chk2 is phosphorylated at sites of DNA strand breaks. J. Biol. Chem. 276, 2971–2974 (2001).

    Article  Google Scholar 

  9. Wang, B., Matsuoka, S., Carpenter, P.B. & Elledge, S.J. 53BP1, a mediator of the DNA damage checkpoint. Science 298, 1435–1438 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, C.H. & Chung, J.H. The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation. J. Biol. Chem. 276, 30537–30541 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, X., Webster, S.R. & Chen, J. Characterization of tumor-associated Chk2 mutations. J. Biol. Chem. 276, 47755–47758 (2001).

    Article  PubMed  Google Scholar 

  12. Kim, S.T., Xu, B. & Kastan, M.B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16, 560–570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yazdi, P.T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16, 571–582 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D'Amours, D. & Jackson, S.P. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nature Rev. Mol. Cell Biol. 3, 317–327 (2002).

    Article  CAS  Google Scholar 

  15. Petrini, J.H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Melo, J.A., Cohen, J. & Toczyski, D.P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809–2821 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanda, T., Sullivan, K.F. & Wahl, G.M. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Falck, J. et al. Functional impact of concomitant versus alternative defects in the Chk2–p53 tumour suppressor pathway. Oncogene 20, 5503–5510 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Chehab, N.H., Malikzay, A., Appel, M. & Halazonetis, T.D. Chk2/Cds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14, 278–288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hirao, A. et al. Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol. Cell. Biol. 22, 6521–6532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takai, H. et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 21, 5195–5205 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahn, J.Y., Li, X., Davis, H.L. & Canman C.E. Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the forkhead-associated domain. J. Biol. Chem. 277, 19389–19395 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, X., Tsvetkov, L.M. & Stern, D.F. Chk2 activation and phosphorylation-dependent oligomerization. Mol. Cell. Biol. 22, 4419–4432 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Desai-Mehta, A., Cerosaletti, K.M. & Concannon, P. Distinct functional domains of Nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol. Cell. Biol. 21, 2184–2191 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tauchi, H. et al. The forkhead-associated domain of Nbs1 is essential for nuclear foci formation after irradiation but not hRad50–hMre11–Nbs1 complex DNA repair activity. J. Biol. Chem. 276, 12–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Li, J. et al. Structural and functional versatility of the FHA domain in DNA-damage signalling by the tumor suppressor kinase Chk2. Mol. Cell 9, 1045–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Essers, J. et al. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO J. 21, 2030–2037 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Norris, P.S. & Haas, M. A fluorescent p53GFP fusion protein facilitates its detection in mammalian cells while retaining the properties of wild-type p53. Oncogene 15, 2241–2247 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Stommel, J.M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lukas, C. et al. DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res. 61, 4990–4993 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Chen, T. Halazonetis, M. Kastan, J. Petrini, M. Oren and G. Wahl for providing reagents, and C. Lindeneg, P. Geltzer and R. Kern for their excellent technical assistance. We are grateful to the Danish Cancer Society, European Commission, and the John and Birthe Meyer Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Lukas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Fig. S1 Generation of DSB restricted to defined subnuclear regions. (PDF 1561 kb)

Fig. S2 Specificity determination of the phospho-Chk2-Thr68 antibodies.Fig. S2 Specificity determination of the phospho-Chk2-Thr68 antibodies.

Fig. S3 Pan-nuclear distribution of ATM-phosphorylated Chk2 and recruitment of the ATM-phosphorylated Nbs1 to the DSB sites confirmed by coimmmunostaining with phospho-histone H2AX.

Fig. S4 Specificity determination of the phospho-Nbs1-Ser343 antibody.

Fig. S5 GFP attachment does not impair the function of Chk2 and Nbs1, respectively.

Fig. S6 A strategy to immobilize Chk2 in vivo.

Fig. S7 Lack of specific recruitment of p53 to the DSB-containing nuclear areas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukas, C., Falck, J., Bartkova, J. et al. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5, 255–260 (2003). https://doi.org/10.1038/ncb945

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing