Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A combined binary interaction and phenotypic map of C. elegans cell polarity proteins

Abstract

The establishment of cell polarity is an essential process for the development of multicellular organisms and the functioning of cells and tissues. Here, we combine large-scale protein interaction mapping with systematic phenotypic profiling to study the network of physical interactions that underlies polarity establishment and maintenance in the nematode Caenorhabditis elegans. Using a fragment-based yeast two-hybrid strategy, we identified 439 interactions between 296 proteins, as well as the protein regions that mediate these interactions. Phenotypic profiling of the network resulted in the identification of 100 physically interacting protein pairs for which RNAi-mediated depletion caused a defect in the same polarity-related process. We demonstrate the predictive capabilities of the network by showing that the physical interaction between the RhoGAP PAC-1 and PAR-6 is required for radial polarization of the C. elegans embryo. Our network represents a valuable resource of candidate interactions that can be used to further our insight into cell polarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and validation of a C. elegans polarity interaction network (CePIN).
Figure 2: Validation of the CePIN.
Figure 3: Identification and validation of minimal regions of interaction (MRIs).
Figure 4: Phenotypic analysis of the bait proteins.
Figure 5: Examples of RNAi phenotypes.
Figure 6: The PAR-6–PAC-1 interaction is required for radial polarization.

Similar content being viewed by others

References

  1. Humbert, P. O. et al. Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 27, 6888–6907 (2008).

    CAS  PubMed  Google Scholar 

  2. Tepass, U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu. Rev. Cell Dev. Biol. 28, 655–685 (2012).

    CAS  PubMed  Google Scholar 

  3. St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell 141, 757–774 (2010).

    CAS  PubMed  Google Scholar 

  4. Jacob, L., Opper, M., Metzroth, B., Phannavong, B. & Mechler, B. M. Structure of the l(2)gl gene of Drosophila and delimitation of its tumor suppressor domain. Cell 50, 215–225 (1987).

    CAS  PubMed  Google Scholar 

  5. Woods, D. F. & Bryant, P. J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66, 451–464 (1991).

    CAS  PubMed  Google Scholar 

  6. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    CAS  PubMed  Google Scholar 

  7. Goehring, N. W. & Grill, S. W. Cell polarity: mechanochemical patterning. Trends Cell Biol. 23, 72–80 (2013).

    CAS  PubMed  Google Scholar 

  8. Rodriguez-Boulan, E. & Macara, I. G. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15, 225–242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Boxem, M. et al. A protein domain-based interactome network for C. elegans early embryogenesis. Cell 134, 534–545 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vidalain, P.-O., Boxem, M., Ge, H., Li, S. & Vidal, M. Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32, 363–370 (2004).

    CAS  PubMed  Google Scholar 

  11. Walhout, A. J. & Vidal, M. A genetic strategy to eliminate self-activator baits prior to high-throughput yeast two-hybrid screens. Genome Res. 9, 1128–1134 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cho, A. et al. WormNet v3: a network-assisted hypothesis-generating server for Caenorhabditis elegans. Nucleic Acids Res. 42, W76–W82 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Braun, P. et al. An experimentally derived confidence score for binary protein–protein interactions. Nat. Methods 6, 91–97 (2009).

    CAS  PubMed  Google Scholar 

  14. Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 1212–1226 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Waaijers, S., Koorman, T., Kerver, J. & Boxem, M. Identification of human protein interaction domains using an ORFeome-based yeast two-hybrid fragment library. J. Proteome Res. 12, 3181–3192 (2013).

    CAS  PubMed  Google Scholar 

  16. Eyckerman, S. et al. Design and application of a cytokine-receptor-based interaction trap. Nat. Cell Biol. 3, 1114–1119 (2001).

    CAS  PubMed  Google Scholar 

  17. Lemmens, I., Lievens, S. & Tavernier, J. MAPPIT, a mammalian two-hybrid method for in-cell detection of protein–protein interactions. Methods Mol. Biol. 1278, 447–455 (2015).

    CAS  PubMed  Google Scholar 

  18. Simonis, N. et al. Empirically controlled mapping of the Caenorhabditis elegans protein–protein interactome network. Nat. Methods 6, 47–54 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stetak, A., Hörndli, F., Maricq, A. V., van den Heuvel, S. & Hajnal, A. Neuron-specific regulation of associative learning and memory by MAGI-1 in C. elegans. PLoS ONE 4, e6019 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Gunsalus, K. C. et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436, 861–865 (2005).

    CAS  PubMed  Google Scholar 

  21. Boulton, S. J. et al. Combined functional genomic maps of the C. elegans DNA damage response. Science 295, 127–131 (2002).

    CAS  PubMed  Google Scholar 

  22. Tu, Z. et al. Integrating siRNA and protein–protein interaction data to identify an expanded insulin signaling network. Genome Res. 19, 1057–1067 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, L., Tu, Z. & Sun, F. A network-based integrative approach to prioritize reliable hits from multiple genome-wide RNAi screens in Drosophila. BMC Genomics 10, 220 (2009).

    PubMed  PubMed Central  Google Scholar 

  24. Wildwater, M., Sander, N., de Vreede, G. & van den Heuvel, S. Cell shape and Wnt signaling redundantly control the division axis of C. elegans epithelial stem cells. Development 138, 4375–4385 (2011).

    CAS  PubMed  Google Scholar 

  25. Winter, J. F. et al. Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity. Nat. Cell Biol. 14, 666–676 (2012).

    CAS  PubMed  Google Scholar 

  26. Grant, B. & Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311–4326 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat. Cell Biol. 9, 1066–1073 (2007).

    CAS  PubMed  Google Scholar 

  28. Maniar, T. A. et al. UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat. Neurosci. 15, 48–56 (2012).

    CAS  Google Scholar 

  29. Wu, X., Pang, E., Lin, K. & Pei, Z.-M. Improving the measurement of semantic similarity between gene ontology terms and gene products: insights from an edge- and IC-based hybrid method. PLoS ONE 8, e66745 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gottfried, I., Ehrlich, M. & Ashery, U. The Sla2p/HIP1/HIP1R family: similar structure, similar function in endocytosis? Biochem. Soc. Trans. 38, 187–191 (2010).

    CAS  PubMed  Google Scholar 

  31. Parker, J. A. et al. Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J. Neurosci. 27, 11056–11064 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, J. et al. The C. elegans SYS-1 protein is a bona fide β-catenin. Dev. Cell 14, 751–761 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Phillips, B. T., Kidd, A. R., King, R., Hardin, J. & Kimble, J. Reciprocal asymmetry of SYS-1/beta-catenin and POP-1/TCF controls asymmetric divisions in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 104, 3231–3236 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cuppen, E., van der Linden, A. M., Jansen, G. & Plasterk, R. H. A. Proteins interacting with Caenorhabditis elegans Galpha subunits. Comp. Funct. Genomics 4, 479–491 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoege, C. et al. LGL can partition the cortex of one-cell Caenorhabditis elegans embryos into two domains. Curr. Biol. 20, 1296–1303 (2010).

    CAS  PubMed  Google Scholar 

  36. Beatty, A., Morton, D., Kemphues, K. & The, C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo. Development 137, 3995–4004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Khan, L. A. et al. Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat. Cell Biol. 15, 143–156 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Göbel, V., Barrett, P. L., Hall, D. H. & Fleming, J. T. Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1. Dev. Cell 6, 865–873 (2004).

    PubMed  Google Scholar 

  39. Armenti, S. T., Chan, E. & Nance, J. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell. Dev. Biol. 394, 110–121 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Berkowitz, L. A. & Strome, S. MES-1, a protein required for unequal divisions of the germline in early C. elegans embryos, resembles receptor tyrosine kinases and is localized to the boundary between the germline and gut cells. Development 127, 4419–4431 (2000).

    CAS  PubMed  Google Scholar 

  41. Bei, Y. et al. SRC-1 and Wnt signaling act together to specify endoderm and to control cleavage orientation in early C. elegans embryos. Dev. Cell 3, 113–125 (2002).

    CAS  PubMed  Google Scholar 

  42. Hoffmann, M., Segbert, C., Helbig, G. & Bossinger, O. Intestinal tube formation in Caenorhabditis elegans requires vang-1 and egl-15 signaling. Dev. Biol. 339, 268–279 (2010).

    CAS  PubMed  Google Scholar 

  43. Honnen, S. J. et al. C. elegans VANG-1 modulates life span via insulin/IGF-1-like signaling. PLoS ONE 7, e32183 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanchez-Alvarez, L. et al. VANG-1 and PRKL-1 cooperate to negatively regulate neurite formation in Caenorhabditis elegans. PLoS Genet. 7, e1002257 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Anderson, D. C., Gill, J. S., Cinalli, R. M. & Nance, J. Polarization of the C. elegans embryo by RhoGAP-mediated exclusion of PAR-6 from cell contacts. Science 320, 1771–1774 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chan, E. & Nance, J. Mechanisms of CDC-42 activation during contact-induced cell polarization. J. Cell Sci. 126, 1692–1702 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chevray, P. M. & Nathans, D. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc. Natl Acad. Sci. USA 89, 5789–5793 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vidal, M., Brachmann, R. K., Fattaey, A., Harlow, E. & Boeke, J. D. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein–protein and DNA-protein interactions. Proc. Natl Acad. Sci. USA 93, 10315–10320 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schiestl, R. H. & Gietz, R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346 (1989).

    CAS  PubMed  Google Scholar 

  51. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

    CAS  PubMed  Google Scholar 

  52. Hibbs, M. A. et al. Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 23, 2692–2699 (2007).

    CAS  PubMed  Google Scholar 

  53. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014); http://www.R-project.org.

    Google Scholar 

  54. Lin, Y.-C. et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat. Commun. 5, 4767 (2014).

    CAS  PubMed  Google Scholar 

  55. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lamesch, P. et al. C. elegans ORFeome version 3.1: increasing the coverage of ORFeome resources with improved gene predictions. Genome Res. 14, 2064–2069 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    CAS  PubMed  Google Scholar 

  58. D’Agostino, I., Merritt, C., Chen, P.-L., Seydoux, G. & Subramaniam, K. Translational repression restricts expression of the C. elegans Nanos homolog NOS-2 to the embryonic germline. Dev. Biol. 292, 244–252 (2006).

    PubMed  Google Scholar 

  59. Praitis, V. Creation of transgenic lines using microparticle bombardment methods. Methods Mol. Biol. 351, 93–107 (2006).

    CAS  PubMed  Google Scholar 

  60. Schonegg, S. & Hyman, A. A. CDC-42 and RHO-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development 133, 3507–3516 (2006).

    CAS  PubMed  Google Scholar 

  61. Orchard, S. et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Zerial for providing the MZE1 strain, C. Bargmann for providing strain CX9797 and a strain carrying the Pdes-2::myristoyl::GFP extrachromosomal array, and M. Harterink for strain STR62. We thank S. de Rouck for technical assistance, and M. Vidal for permission to reanalyse MAPPIT data. We thank F. Zwartkruis, M. Gloerich and A. Thomas for critically reading the manuscript. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). This work was supported by the Netherlands Organization for Scientific Research (NWO) ALW Innovational Research Incentives Scheme Vidi grant 864.09.008 to M.B., NWO-CW ECHO grant 711.014.005 to M.B., National Science Foundation Graduate Research Fellowship 12-A0-00-000165-01 to D.K., and NIH grants R01GM078341 and R01GM098492 to J.N. J.T. is the recipient of ERC Advanced Grant 340941.

Author information

Authors and Affiliations

Authors

Contributions

M.v.d.V. contributed to the cloning and Y2H screens. D.K. performed the PAC-1 rescue experiments. I.L. performed the MAPPIT experiments. J.J.R. and S.N. contributed to the RNAi screens. M.B. performed the computational analyses. All other experiments were performed by T.K. S.v.d.H. and T.K. contributed to the design of the study. J.N. contributed to the design of the PAC-1 PAR-6 experiments. J.T. contributed to the design of the MAPPIT experiments. T.K. and M.B. wrote the manuscript. M.B. guided all aspects of the study.

Corresponding author

Correspondence to Mike Boxem.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Enrichment of shared Gene Ontology (GO) terms and similar expression profiles in interacting protein pairs compared to control networks generated by replacing the prey proteins with random proteins from the search space.

(a) GO similarity scores for interacting protein pairs identified using the AD-cDNA library. Semantic similarity scores for the BP component of GO were calculated using the HRSS software package, which scores protein pairs on a scale of 0 (dissimilar GO terms) to 1 (similar GO terms)29. (b) Same as (a), but for interactions identified using the AD-Fragment scores. Due to the already high semantic similarity scores for pairs in the search space (749 genes involved in early embryonic development), enrichment scores are less high than for AD-cDNA derived interactions. Control network bars represent the mean of 100,000 control networks ± s.d. Statistical significance is the fraction of control networks that displayed the same or higher fraction of pairs with a particular GO similarity range as the actual interaction network. Protein pairs in the interaction network are depleted for pairs with a low semantic similarity score, and enriched for pairs with a high similarity score. (cf) Average Pearson correlation coefficient (PCC) score of mRNAs corresponding to protein pairs in the indicated interaction datasets (red arrows), compared with the distribution of average PCC scores of 100,000 control networks generated by replacing the bait proteins with random proteins from the search space (blue line). PCC values were calculated using the compendium of expression microarray data collected in Wormbase release WS236. Statistical significance is the fraction of control networks that displayed an average PCC score identical or higher than the actual interaction network. As observed previously9, early embryogenesis genes already have such similar expression profiles that no further enrichment can be observed for interactions derived from the AD-Fragment library.

Supplementary Figure 2 Western blots for all protein pairs testing positive by co-affinity purification.

For every pair, three blots are shown. Top: detection of GFP-tagged proteins that co-purify with biotinylated mCherry-tagged proteins using an anti-GFP antibody. Middle: detection of GFP-tagged proteins in total lysates using an anti-GFP antibody. Bottom: detection of biotinylated Avi-mCherry tagged proteins in total lysates using streptavidin coupled to horse radish peroxidase. Protein pairs tested are indicated above the blots. The first protein listed is the Avi-mCherry tagged bait. Also indicated is whether the prey protein tested was full-length (f.l.) or corresponds to a shorter fragment (frag.). In all blots, lanes 1 and 2 are negative controls, and lane 3 is the actual affinity purification (1: Avi-mCherry-bait vs. EGFP alone, 2: Avi-mCherry alone vs. EGFP-tagged prey, 3: Avi-mCherry-bait versus EGFP-prey). The 35 kDa band in lanes 2 of the upper blots is due to cross-reactivity of the anti-GFP antibody with the highly abundant Avi-mCherry polypeptide. Asterisks indicate bands of expected molecular mass. Purifications were performed once. Unprocessed scans are shown in Supplementary Fig. 5.

Supplementary Figure 3 Graphical representation of every protein in the interaction network and the MRIs identified for that protein.

Grey boxes are full-length proteins. Predicted domains are shown as boxes of various colors and shapes. Identified MRIs are shown as yellow lines above the protein graphic. Protein names above each MRI indicate which proteins bind to that particular region.

Supplementary Figure 4 Analysis of MRIs.

(ac) Distributions of MRI lengths expressed as the percentage of the corresponding full-length protein. (df) Distributions of absolute MRI lengths in amino acid residues. (a,d) MRIs identified for the bait proteins. (b,e) MRIs identified for the prey proteins from AD-Fragment library derived clones. (c,f) MRIs identified for the prey proteins from AD-cDNA library derived clones. (g) Graphical representations of all MRIs where interaction sites had previously been identified in the literature. Grey boxes are full-length proteins. Predicted domains are shown as boxes of various colors and shapes. Identified MRIs are shown as yellow lines above the protein graphic. Interaction sites from the literature are shown as blue lines above the protein graphic. In cases where the literature describes an interaction domain for a non-C. elegans protein, the corresponding site in the C. elegans protein is shown.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6532 kb)

Supplementary Table 1

Supplementary Information (XLSX 48 kb)

Supplementary Table 2

Supplementary Information (XLSX 61 kb)

Supplementary Table 3

Supplementary Information (XLSX 45 kb)

Supplementary Table 4

Supplementary Information (XLSX 21 kb)

Supplementary Table 5

Supplementary Information (XLSX 118 kb)

Supplementary Table 6

Supplementary Information (XLSX 104 kb)

Supplementary Table 7

Supplementary Information (XLSX 40 kb)

Supplementary Table 8

Supplementary Information (XLSX 9 kb)

Supplementary Table 9

Supplementary Information (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koorman, T., Klompstra, D., van der Voet, M. et al. A combined binary interaction and phenotypic map of C. elegans cell polarity proteins. Nat Cell Biol 18, 337–346 (2016). https://doi.org/10.1038/ncb3300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing