Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore

A Corrigendum to this article was published on 01 March 2013

This article has been updated

Abstract

Kinetochores attach the replicated chromosomes to the mitotic spindle and orchestrate their transmission to the daughter cells. Kinetochore–spindle binding and chromosome segregation are mediated by the multi-copy KNL1Spc105, MIS12Mtw1 and NDC80Ndc80 complexes that form the so-called KMN network. KMN–spindle attachment is regulated by the Aurora BIpl1 and MPS1Mps1 kinases. It is unclear whether other mechanisms exist that support KMN activity during the cell cycle. Using budding yeast, we show that kinetochore protein Cnn1 localizes to the base of the Ndc80 complex and promotes a functionally competent configuration of the KMN network. Cnn1 regulates KMN activity in a spatiotemporal manner by inhibiting the interaction between its complexes. Cnn1 activity peaks in anaphase and is driven by the Cdc28, Mps1 and Ipl1 kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cnn1 is a kinetochore component whose concentration at kinetochores peaks in anaphase.
Figure 2: The enrichment of Cnn1 at anaphase kinetochores is phospho-driven.
Figure 3: Cnn1 protein–protein interactions and localization to the inner kinetochore.
Figure 4: Cnn1 ensures a timely progression through S phase and promotes faithful chromosome transmission.
Figure 5: Cnn1 promotes the sister-chromatid/spindle binding and bi-orientation activity of the KMN network.
Figure 6: Cnn1 inhibits the interaction between the KMN complexes.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 11 February 2013

    In the version of this Article that was originally published, the acknowledgement to M. Winey and reference 48 in the Methods section were omitted in error. These corrections have been made in the PDF and HTML versions of the Article.

References

  1. Lampert, F. & Westermann, S. A blueprint for kinetochores—new insights into the molecular mechanics of cell division. Nat. Rev. Mol. Cell Biol. 12, 407–412 (2011).

    Article  CAS  Google Scholar 

  2. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005).

    Article  CAS  Google Scholar 

  3. Tanaka, T. U. Kinetochore-microtubule interactions: steps toward bi-orientation. EMBO J. 29, 4070–4082 (2010).

    Article  CAS  Google Scholar 

  4. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  Google Scholar 

  5. Espeut, J. et al. Microtubule binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore. J. Cell Biol. 196, 469–482 (2012).

    Article  CAS  Google Scholar 

  6. Tanaka, T. U. et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002).

    Article  CAS  Google Scholar 

  7. Lampson, M. A., Renduchitala, K., Khodjakov, A. & Kapoor, T. M. Correcting improper chromosome-spindle attachments during cell division. Nat. Cell Biol. 6, 232–237 (2004).

    Article  CAS  Google Scholar 

  8. Maure, J-F., Kitamura, E. & Tanaka, T. U. Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism. Curr. Biol. 17, 2175–2182 (2007).

    Article  CAS  Google Scholar 

  9. Santaguida, S. et al. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell Biol. 190, 73–87 (2010).

    Article  CAS  Google Scholar 

  10. Maresca, T. J. & Salmon, E. D. Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J. Cell Sci. 123, 825–835 (2010).

    Article  CAS  Google Scholar 

  11. Foley, E. A., Maldonado, M. & Kapoor, T. M. Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat. Cell Biol. 13, 1265–1271 (2011).

    Article  CAS  Google Scholar 

  12. Meadows, J. C. et al. Spindle checkpoint silencing requires association of PP1 to both Spc7 and kinesin-8 motors. Dev. Cell 20, 739–750 (2011).

    Article  CAS  Google Scholar 

  13. Rosenberg, J. S., Cross, F. R. & Funabiki, H. KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint. Curr. Biol. 21, 942–947 (2011).

    Article  CAS  Google Scholar 

  14. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).

    Article  CAS  Google Scholar 

  15. Lechner, J. & Carbon, J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64, 717–725 (1991).

    Article  CAS  Google Scholar 

  16. Coffman, V. C., Wu, P., Parthun, M. R. & Wu, J-Q. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. J. Cell Biol. 195, 563–572 (2011).

    Article  CAS  Google Scholar 

  17. Lawrimore, J., Bloom, K. S. & Salmon, E. D. Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J. Cell Biol. 195, 573–582 (2011).

    Article  CAS  Google Scholar 

  18. Ubersax, J. A. et al. Targets of the cyclin dependent kinase Cdk1. Nature 425, 859–864 (2003).

    Article  CAS  Google Scholar 

  19. Loog, M. & Morgan, D. O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104–108 (2005).

    Article  CAS  Google Scholar 

  20. Breitkreutz, A. et al. A global protein kinase and phosphatase interaction network in yeast. Science 328, 1043–1046 (2010).

    Article  CAS  Google Scholar 

  21. Cheeseman, I. M. et al. Phospho-regulation of kinetochore-microtubule attachments by the aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  Google Scholar 

  22. De Wulf, P., Montani, F. & Visintin, R. Protein phosphatases take the mitotic stage. Curr. Opin. Cell Biol. 21, 806–815 (2009).

    Article  CAS  Google Scholar 

  23. Wei, R. R., Sorger, P. K. & Harrison, S. C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl Acad. Sci. USA 102, 5363–5367 (2005).

    Article  CAS  Google Scholar 

  24. Lingelbach, L. B. & Kaplan, K. B. The interaction between Sgt1p and Skp1p is regulated by HSP90 chaperones and is required for proper CBF3 assembly. Mol. Cell. Biol. 24, 8938–8950 (2004).

    Article  CAS  Google Scholar 

  25. Blake-Hodek, K. A., Cassimeris, L. & Huffaker, T. C. Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP-170 families of plus-end tracking proteins. Mol. Biol. Cell 21, 2013–2023 (2010).

    Article  CAS  Google Scholar 

  26. Wong, J. et al. A protein interaction map of the mitotic spindle. Mol. Biol. Cell 18, 3800–3809 (2007).

    Article  CAS  Google Scholar 

  27. Schuyler, S. C. & Pellman, D. Analysis of the size and shape of protein complexes from yeast. Meth. Enzymol. 351, 150–168 (2002).

    Article  CAS  Google Scholar 

  28. Gillett, E. S., Espelin, C. W. & Sorger, P. K. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J. Cell Biol. 164, 535–546 (2004).

    Article  CAS  Google Scholar 

  29. Pagliuca, C., Draviam, V. M., Marco, E., Sorger, P. K. & De Wulf, P. Roles for the conserved Spc105p-Kre28p complex in kinetochore-microtubule binding and the spindle assembly checkpoint. PLoS ONE 4, e7640 (2009).

    Article  Google Scholar 

  30. Krenn, V. et al. Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction. J. Cell Biol. 196, 451–467 (2012).

    Article  CAS  Google Scholar 

  31. Kitamura, E., Tanaka, K., Kitamura, Y. & Tanaka, T. U. Kinetochore microtubule interaction during S phase in Saccharomyces cerevisiae. Genes Dev. 21, 3319–3330 (2007).

    Article  CAS  Google Scholar 

  32. Koshland, D. & Hieter, P. Visual assay for chromosome ploidy. Meth. Enzymol. 155, 351–372 (1987).

    Article  CAS  Google Scholar 

  33. Tong, A. H. & Boone, C. Synthetic genetic array analysis in Saccharomyces cerevisiae. Meth. Mol. Biol. 313, 171–192 (2006).

    CAS  Google Scholar 

  34. Tien, J. F. et al. Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J. Cell Biol. 189, 713–723 (2010).

    Article  CAS  Google Scholar 

  35. Lampert, F., Hornung, P. & Westermann, S. The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J. Cell Biol. 189, 641–649 (2010).

    Article  CAS  Google Scholar 

  36. Maskell, D. P., Hu, X-W. & Singleton, M. R. Molecular architecture and assembly of the yeast kinetochore MIND complex. J. Cell Biol. 190, 823–834 (2010).

    Article  CAS  Google Scholar 

  37. Schleiffer, A. et al. CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat. Cell Biol.http://dx.doi.org/10.1038/ncb2493 (2012).

  38. Perpelescu, M. & Fukagawa, T. The ABCs of CENPs. Chromosoma 120, 425–446 (2011).

    Article  Google Scholar 

  39. Nishino, T. et al. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148, 487–501 (2012).

    Article  CAS  Google Scholar 

  40. Gascoigne, K. E. et al. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145, 410–422 (2011).

    Article  CAS  Google Scholar 

  41. Przewloka, M. R. et al. CENP-C is a structural platform for kinetochore assembly. Curr. Biol 21, 399–405 (2011).

    Article  CAS  Google Scholar 

  42. Screpanti, E. et al. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol. 21, 391–398 (2011).

    Article  CAS  Google Scholar 

  43. Liu, S-T., Rattner, J. B., Jablonski, S. A. & Yen, T. J. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 175, 41–53 (2006).

    Article  CAS  Google Scholar 

  44. Ohkuni, K., Abdulle, R., Tong, A. H., Boone, C. & Kitagawa, K. Ybp2 associates with the central kinetochore of Saccharomyces cerevisiae and mediates proper mitotic progression. PLoS ONE 3, e1617 (2008).

    Article  Google Scholar 

  45. Bermejo, R., Katou, Y. M., Shirahige, K. & Foiani, M. ChIP-on-chip analysis of DNA topoisomerases. Meth. Mol. Biol. 582, 103–118 (2009).

    Article  CAS  Google Scholar 

  46. Akiyoshi, B. et al. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468, 576–579 (2010).

    Article  CAS  Google Scholar 

  47. Cho, R. J. et al. Parallel analysis of genetic selections using whole genome oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95, 3752–3757 (1998).

    Article  CAS  Google Scholar 

  48. Holinger, E. P. et al. Budding yeast centrosome duplication requires stabilization of Spc29 via Mps1-mediated phosphorylation. J. Biol. Chem. 284, 12949–12955 (2009).

    Article  CAS  Google Scholar 

  49. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Amon (MIT, USA), S. Biggins (University of Washington, USA), D. Koshland (University of California, Berkeley, USA), M. Singleton (Cancer Research UK), F. Solomon (MIT, USA), P. K. Sorger (Harvard Medical School, USA) and M. Winey (University of Colorado, USA) for strains or reagents. We also thank M. Foiani, S. Ghandi, D. Lamont, J. Lechner, C. Lucca, J. Ortiz, S. ten Have and R. Visintin for technical support or discussions. We thank A. Schleiffer and S. Westermann for communicating results before publication. P.D.W. acknowledges financial support from the Italian Association for Cancer Research (grant 8840). T.R.H. recognizes support from the N.I.H. (grant GM087461) and the American Cancer Society (grant IRG 58-006-50). T.U.T. acknowledges a Cancer Research U.K. senior fellowship and Wellcome Trust program grant. L.J.B. acknowledges a doctoral fellowship from the European School of Molecular Medicine.

Author information

Authors and Affiliations

Authors

Contributions

L.J.B. and C.P. performed all the genetic, molecular biological, biochemical and cell biological experiments. N.K. performed the time-lapse CEN-reactivation and Cnn1–3GFP imaging experiments, R.A.G. performed the Y2H screens, Y.O. performed the in vitro kinase experiments, K.S. performed the in vitro Cnn1–KMN binding experiments, C.A. helped with the genetic interaction screens and the ChIP–chip experiment, C.G. and M.D.M. performed the cell-cycle experiments, PhosTag western hybridization and Cnn1–Cnn1 co-immunoprecipitation experiments. A.O. performed the FRAP experiments and helped with the quantification of Cnn1–3GFP and Ndc80–3GFP at kinetochores, R.B. helped with the ChIP–chip experiment and converted the microarray data into graphic format, T.R.H. supervised the Y2H screens and the in vitro Cnn1–KMN binding experiments. T.U.T. supervised the live-cell imaging experiments. P.D.W. supervised the project, helped with yeast imaging and wrote the paper.

Corresponding author

Correspondence to Peter De Wulf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, L., Pagliuca, C., Kobayashi, N. et al. Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell Biol 14, 614–624 (2012). https://doi.org/10.1038/ncb2495

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2495

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing