Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation

Abstract

Large pleiomorphic carriers leave the Golgi complex for the plasma membrane by en bloc extrusion of specialized tubular domains, which then undergo fission. Several components of the underlying molecular machinery have been identified, including those involved in the budding/initiation of tubular carrier precursors (for example, the phosphoinositide kinase PI(4)KIIIβ, the GTPase ARF, and FAPP2), and in the fission of these precursors (for example, PKD, CtBP1-S/BARS). However, how these proteins interact to bring about carrier formation is poorly understood. Here, we describe a protein complex that mediates carrier formation and contains budding and fission molecules, as well as other molecules, such as the adaptor protein 14-3-3γ. Specifically, we show that 14-3-3γ dimers bridge CtBP1-S/BARS with PI(4)KIIIβ, and that the resulting complex is stabilized by phosphorylation by PKD and PAK. Disrupting the association of these proteins inhibits the fission of elongating carrier precursors, indicating that this complex couples the carrier budding and fission processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BARS interacts with 14-3-3γ and several proteins involved in PGC formation.
Figure 2: 14-3-3γ depletion reduces VSVG-positive PGC formation.
Figure 3: 14-3-3γ is required for BARS-dependent fission of post-Golgi carriers.
Figure 4: The 14-3-3γ dimer bridges BARS and PI(4)KIIIβ and has a role in VSVG-positive PGC formation.
Figure 5: Localization of 14-3-3γ and BARS.
Figure 6: BARS and PI(4)KIIIβ are required for Golgi localization of 14-3-3γ.
Figure 7: Molecular organization, regulation and functional role of BARS–14-3-3γ interaction.
Figure 8: 14-3-3γ is required for COPI retrograde transport and macropinocytosis, and close association of PI(4)KIIIβ and BARS at the Golgi during a traffic pulse.

Similar content being viewed by others

References

  1. De Matteis, M. A. & Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9, 273–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Polishchuk, E. V., Di Pentima, A., Luini, A. & Polishchuk, R. S. Mechanism of constitutive export from the golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-golgi network tubular domains. Mol. Biol. Cell 14, 4470–4485 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol. 6, 233–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Rothman, J. E. Lasker Basic Medical Research Award. The machinery and principles of vesicle transport in the cell. Nat. Med. 8, 1059–1062 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Schekman, R. Lasker Basic Medical Research Award. SEC mutants and the secretory apparatus. Nat. Med. 8, 1055–1058 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Haynes, L. P., Thomas, G. M. & Burgoyne, R. D. Interaction of neuronal calcium sensor-1 and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol 4-kinase β and trans-Golgi network–plasma membrane traffic. J. Biol. Chem. 280, 6047–6054 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bruns, J. R., Ellis, M. A., Jeromin, A. & Weisz, O. A. Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized Madin-Darby canine kidney cells. J. Biol. Chem. 277, 2012–2018 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol. 6, 393–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Godi, A. et al. ARF mediates recruitment of PtdIns-4-OH kinase- β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat. Cell Biol. 1, 280–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. D’Angelo, G. et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449, 62–67 (2007).

    Article  PubMed  Google Scholar 

  12. Cao, X. et al. Golgi protein FAPP2 tubulates membranes. Proc. Natl Acad. Sci. USA 106, 21121–21125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Diaz Anel, A. M. Phospholipase C β3 is a key component in the Gβγ/PKCη/PKD-mediated regulation of trans-Golgi network to plasma membrane transport. Biochem. J. 406, 157–165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liljedahl, M. et al. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104, 409–420 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Yeaman, C. et al. Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nat. Cell Biol. 6, 106–112 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miserey-Lenkei, S. et al. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat. Cell Biol. 12, 645–654 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat. Cell Biol. 7, 570–580 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Nardini, M. et al. CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J. 22, 3122–3130 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Corda, D., Colanzi, A. & Luini, A. The multiple activities of CtBP/BARS proteins: the Golgi view. Trends Cell Biol. 16, 167–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Colanzi, A. & Corda, D. Mitosis controls the Golgi and the Golgi controls mitosis. Curr. Opin. Cell Biol. 19, 386–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Aitken, A. 14-3-3 proteins: a historic overview. Semin. Cancer Biol. 16, 162–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Hausser, A. et al. Phospho-specific binding of 14-3-3 proteins to phosphatidylinositol 4-kinase III β protects from dephosphorylation and stabilises lipid kinase activity. J. Cell Sci. 119, 3613–3621 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Demmel, L. et al. Nucleocytoplasmic shuttling of the Golgi phosphatidylinositol 4-kinase Pik1 is regulated by 14-3-3 proteins and coordinates Golgi function with cell growth. Mol. Biol. Cell 19, 1046–1061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valente, C., Spanò, S., Luini, A. & Corda, D. Purification and functional properties of the membrane fissioning protein CtBP3/BARS. Methods Enzymol. 404, 296–316 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, X. et al. Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase β stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J. Biol. Chem. 276, 40183–40189 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hausser, A. et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase III β at the Golgi complex. Nat. Cell Biol. 7, 880–886 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eswaran, J., Soundararajan, M., Kumar, R. & Knapp, S. UnPAKing the class differences among p21-activated kinases. Trends Biochem. Sci. 33, 394–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Rodriguez Boulan, E. & Pendergast, M. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20, 45–54 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Matlin, K. S. & Simons, K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell 34, 233–243 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Polishchuk, R., Di Pentima, A. & Lippincott-Schwartz, J. Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nat. Cell Biol. 6, 297–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Marra, P. et al. The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nat. Cell Biol. 3, 1101–1113 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Pelkmans, L. & Helenius, A. Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell Biol. 15, 414–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Steinacker, P. et al. Unchanged survival rates of 14-3-3γ knockout mice after inoculation with pathological prion protein. Mol. Cell Biol. 25, 1339–1346 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chaudhri, M., Scarabel, M. & Aitken, A. Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo. Biochem. Biophys. Res. Commun. 300, 679–685 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Yaffe, M. B. et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Braselmann, S. & McCormick, F. Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J. 14, 4839–4848 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vincenz, C. & Dixit, V. M. 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J. Biol. Chem. 271, 20029–20034 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Van Der Hoeven, P. C., Van Der Wal, J. C., Ruurs, P., Van Dijk, M. C. & Van Blitterswijk, J. 14-3-3 isotypes facilitate coupling of protein kinase C- ζ to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem. J. 345 Pt 2, 297–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Liberali, P. et al. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J. 27, 970–981 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, D. et al. Crystal structure of the ζ isoform of the 14-3-3 protein. Nature 376, 191–194 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Ottmann, C. et al. Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis. EMBO J. 26, 902–913 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barnes, C. J. et al. Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat. Struct. Biol. 10, 622–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Dharmawardhane, S. et al. Regulation of macropinocytosis by p21-activated kinase-1. Mol. Biol. Cell 11, 3341–3352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paglini, G., Peris, L., Diez-Guerra, J., Quiroga, S. & Caceres, A. The Cdk5-p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep. 2, 1139–1144 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deacon, S. W. et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem. Biol. 15, 322–331 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, J. S. et al. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J. 24, 4133–4143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, J. S. et al. COPI acts in both vesicular and tubular transport. Nat. Cell Biol. 13, 996–1003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hidalgo Carcedo, C. et al. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science 305, 93–96 (2004).

    Article  PubMed  Google Scholar 

  49. Colanzi, A. et al. The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J. 26, 2465–2476 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saeed, M. F., Kolokoltsov, A. A., Albrecht, T. & Davey, R. A. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 6, e1001110 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Haga, Y., Miwa, N., Jahangeer, S., Okada, T. & Nakamura, S. CtBP1/BARS is an activator of phospholipase D1 necessary for agonist-induced macropinocytosis. EMBO J. 28, 1197–1207 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moreau, D. et al. Genome-wide RNAi screens identify genes required for ricin and PE intoxications. Dev. Cell 21, 231–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Tzivion, G. & Avruch, J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J. Biol. Chem. 277, 3061–3064 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Ponsioen, B. et al. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep. 5, 1176–1180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pusapati, G. V. et al. Role of the second cysteine-rich domain and Pro275 in PKD2 interaction with ARF1, TGN recruitment and protein transport. Mol. Biol. Cell 21, 1011–1022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beck, R. et al. Membrane curvature induced by Arf1-GTP is essential for vesicle formation. Proc. Natl Acad. Sci. USA 105, 11731–11736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krauss, M. et al. Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J. Biol. Chem. 283, 27717–27723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lundmark, R., Doherty, G. J., Vallis, Y., Peter, B. J. & McMahon, H. T. Arf family GTP loading is activated by, and generates, positive membrane curvature. Biochem. J. 414, 189–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Vieira, O. V., Verkade, P., Manninen, A. & Simons, K. FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J. Cell Biol. 170, 521–526 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schmidt, J. A. & Brown, W. J. Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. J. Cell Biol. 186, 211–218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwarz, K., Natarajan, S., Kassas, N., Vitale, N. & Schmitz, F. The synaptic ribbon is a site of phosphatidic acid generation in ribbon synapses. J. Neurosci. 31, 15996–16011 (2011).

  62. Weigert, R. et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Gallop, J. L., Butler, P. J. & McMahon, H. T. Endophilin and CtBP/BARSare not acyl transferases in endocytosis or Golgi fission. Nature 438, 675–678 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Pulvirenti, T. et al. A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway. Nat. Cell Biol. 10, 912–922 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (CSH Press, 1988).

    Google Scholar 

  66. Malhotra, V., Serafini, T., Orci, L., Shepherd, J. C. & Rothman, J. E. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58, 329–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Leelavathi, D. E., Estes, L. V., Feingold, D. S. & Lombardi, B. Isolation of a Golgi rich fraction from rat liver. BBA 211, 124–138 (1970).

    Article  CAS  Google Scholar 

  68. Verdoodt, B., Benzinger, A., Popowicz, G. M., Holak, T. A. & Hermeking, H. Characterization of 14-3-3σ dimerization determinants: requirement of homodimerization for inhibition of cell proliferation. Cell Cycle 5, 2920–2926 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, Y., Reddy, S., Murrey, H., Fei, H. & Levitan, I. B. Monomeric 14-3-3 protein is sufficient to modulate the activity of the Drosophila slowpoke calcium-dependent potassium channel. J. Biol. Chem. 278, 10073–10080 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat. Cell Biol. 3, 140–149 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all colleagues who kindly provided them with antibodies and reagents (as listed under ‘Reagents’); M. A. De Matteis and C. Wilson for critical reading of the manuscript; J. Chernoff for the PAK inhibitor IPA-3 (Fox Chase Cancer Center); C. P. Berrie for critical reading of and editorial assistance with the manuscript; C. Cericola for preparation of the anti-BARS antibody; R. Le Donne and E. Fontana for preparation of the figures; the Integrated Microscopy Facility at the Institute of Genetics and Biophysics, National Research Council, Naples, and the Dynamic Imaging Microscopy Facility at the CEINGE Institute, Naples, for support in imaging microscopy, data processing and analysis; the Italian Association for Cancer Research (to D.C. IG4664 and IG10341, to A.L. IG4700, to A.C. IG6074 and to R.S.P. IG10233), Telethon Italia (to D.C. GGPO9274, to A.L. GGPO8231 and to R.S.P. GTF08001), the European Community Seventh Framework Programme FP7/2007-2013 HEALTH-F2-2007-201804 (Eucilia to A.L.), grant FIT DM 24/09/2009, Legge 46/82, and FaReBio, Ministry of Economy and Finance (to D.C.) for financial support. C.V., A.P. and S.S. were recipients of Italian Foundation for Cancer Research Fellowships (FIRC, Milan, Italy).

Author information

Authors and Affiliations

Authors

Contributions

C.V. designed, carried out and analysed all of the experiments and co-wrote the manuscript. G.T. carried out immunofluorescence and electron microscopy experiments. A.P. carried out COPI retrograde transport and macropinocytosis assays. G.D.T., M.S. and D.P. produced essential antibodies. F.F. carried out FRET and FLIM experiments. S.S. carried out initial experiments. R.G. carried out some phosphorylation experiments. R.S.P. carried out time-lapse microscopy. A.C. and S.M. contributed to relevant discussions and suggestions. D.C. and A.L. conceived and supervised the project, discussed and analysed the data and co-wrote the manuscript.

Corresponding authors

Correspondence to Stefania Spanò, Alberto Luini or Daniela Corda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 955 kb)

Supplementary Table 1

Supplementary Information (XLS 32 kb)

Supplementary Table 2

Supplementary Information (XLS 28 kb)

Supplementary Movie 1

Supplementary Information (MOV 2591 kb)

Supplementary Movie 2

Supplementary Information (MOV 2294 kb)

Supplementary Movie 3

Supplementary Information (MOV 8047 kb)

Supplementary Movie 4

Supplementary Information (MOV 2011 kb)

Supplementary Movie 5

Supplementary Information (MOV 611 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valente, C., Turacchio, G., Mariggiò, S. et al. A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation. Nat Cell Biol 14, 343–354 (2012). https://doi.org/10.1038/ncb2445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing