Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MyosinV controls PTEN function and neuronal cell size

An Erratum to this article was published on 01 November 2009

This article has been updated

Abstract

The tumour suppressor PTEN can inhibit cell proliferation and migration as well as control cell growth, in different cell types1. PTEN functions predominately as a lipid phosphatase, converting PtdIns(3,4,5)P3 to PtdIns(4,5)P2, thereby antagonizing PI(3)K (phosphoinositide 3-kinase) and its established downstream effector pathways2. However, much is unclear concerning the mechanisms that regulate PTEN movement to the cell membrane, which is necessary for its activity towards PtdIns(3,4,5)P3 (Refs 3, 4, 5). Here we show a requirement for functional motor proteins in the control of PI3K signalling, involving a previously unknown association between PTEN and myosinV. FRET (Förster resonance energy transfer) measurements revealed that PTEN interacts directly with myosinV, which is dependent on PTEN phosphorylation mediated by CK2 and/or GSK3. Inactivation of myosinV-transport function in neurons increased cell size, which, in line with known attributes of PTEN-loss6,7, required PI(3)K and mTor. Our data demonstrate a myosin-based transport mechanism that regulates PTEN function, providing new insights into the signalling networks regulating cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and characterization of the PTEN:myosinVa interaction.
Figure 2: MyosinV regulates neuronal soma size through PI3K signalling.
Figure 3: The PTEN:myosinV interaction is mediated by a positively charged region in myosinVa.
Figure 4: Neuronal soma size is controlled by GSK3 and CK2 upstream of PTEN and myosinV.

Similar content being viewed by others

Change history

  • 05 October 2009

    In the version of this article initially published, the directions of the horizontal arrows in Fig. 4b were reversed. This error has been corrected in the HTML and PDF versions of the article.

References

  1. Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403–414 (2008).

    Article  CAS  Google Scholar 

  2. Sulis, M. L. & Parsons, R. PTEN: from pathology to biology. Trends Cell Biol. 13, 478–483 (2003).

    Article  CAS  Google Scholar 

  3. Pinal, N. et al. Regulated and polarized PtdIns(3, 4, 5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr. Biol. 16, 140–149 (2006).

    Article  CAS  Google Scholar 

  4. Takahashi, Y., Morales, F. C., Kreimann, E. L. & Georgescu, M. M. PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J. 25, 910–920 (2006).

    Article  CAS  Google Scholar 

  5. Vazquez, F. et al. Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proc. Natl Acad. Sci. USA 103, 3633–3638 (2006).

    Article  CAS  Google Scholar 

  6. Kwon, C. H., Zhu, X., Zhang, J. & Baker, S. J. mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc. Natl Acad. Sci. USA 100, 12923–12928 (2003).

    Article  CAS  Google Scholar 

  7. Kwon, C. H. et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388 (2006).

    Article  CAS  Google Scholar 

  8. Chadborn, N. H. et al. PTEN couples Sema3A signalling to growth cone collapse. J. Cell Sci. 119, 951–957 (2006).

    Article  CAS  Google Scholar 

  9. Heit, B. et al. PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils. Nature Immunol. 9, 743–752 (2008).

    Article  CAS  Google Scholar 

  10. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    Article  CAS  Google Scholar 

  11. Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    Article  CAS  Google Scholar 

  12. Krendel, M. & Mooseker, M. S. Myosins: tails (and heads) of functional diversity. Physiology (Bethesda) 20, 239–251 (2005).

    CAS  Google Scholar 

  13. Torres, J. & Pulido, R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J. Biol. Chem. 276, 993–998 (2001).

    Article  CAS  Google Scholar 

  14. Al-Khouri, A. M., Ma, Y., Togo, S. H., Williams, S. & Mustelin, T. Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3β. J. Biol. Chem. 280, 35195–35202 (2005).

    Article  CAS  Google Scholar 

  15. Sumitomo, M. et al. Synergy in tumor suppression by direct interaction of neutral endopeptidase with PTEN. Cancer Cell 5, 67–78 (2004).

    Article  CAS  Google Scholar 

  16. Parsons, M., Messent, A. J., Humphries, J. D., Deakin, N. O. & Humphries, M. J. Quantification of integrin receptor agonism by fluorescence lifetime imaging. J. Cell Sci. 121, 265–271 (2008).

    Article  CAS  Google Scholar 

  17. Mercer, J. A., Seperack, P. K., Strobel, M. C., Copeland, N. G. & Jenkins, N. A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709–713 (1991).

    Article  CAS  Google Scholar 

  18. Wang, F. S., Wolenski, J. S., Cheney, R. E., Mooseker, M. S. & Jay, D. G. Function of myosin-V in filopodial extension of neuronal growth cones. Science 273, 660–663 (1996).

    Article  CAS  Google Scholar 

  19. Espreafico, E. M. et al. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J. Cell Biol. 119, 1541–1557 (1992).

    Article  CAS  Google Scholar 

  20. Sanal, O. et al. An allelic variant of Griscelli disease: presentation with severe hypotonia, mental-motor retardation, and hypopigmentation consistent with Elejalde syndrome (neuroectodermal melanolysosomal disorder). J. Neurol. 247, 570–572 (2000).

    Article  CAS  Google Scholar 

  21. Kwon, C. H. et al. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nature Genet 29, 404–411 (2001).

    Article  CAS  Google Scholar 

  22. van Diepen, M. T. & Eickholt, B. J. Function of PTEN during the formation and maintenance of neuronal circuits in the brain. Dev. Neurosci. 30, 59–64 (2008).

    Article  CAS  Google Scholar 

  23. Zhao, L. P. et al. Cloning and characterization of myr 6, an unconventional myosin of the dilute/myosin-V family. Proc. Natl Acad. Sci. USA 93, 10826–10831 (1996).

    Article  CAS  Google Scholar 

  24. Rodriguez, O. C. & Cheney, R. E. Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J. Cell Sci. 115, 991–1004 (2002).

    CAS  PubMed  Google Scholar 

  25. Brown, J. R., Peacock-Villada, E. M. & Langford, G. M. Globular tail fragment of myosin-V displaces vesicle-associated motor and blocks vesicle transport in squid nerve cell extracts. Biol. Bull. 203, 210–211 (2002).

    Article  Google Scholar 

  26. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    Article  CAS  Google Scholar 

  27. Rahdar, M. et al. A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc. Natl Acad. Sci. USA 106, 480–485 (2009).

    Article  CAS  Google Scholar 

  28. Vazquez, F., Ramaswamy, S., Nakamura, N. & Sellers, W. R. Phosphorylation of the PTEN tail regulates protein stability and function. Mol. Cell. Biol. 20, 5010–5018 (2000).

    Article  CAS  Google Scholar 

  29. Spittaels, K. et al. Neonatal neuronal overexpression of glycogen synthase kinase-3 β reduces brain size in transgenic mice. Neuroscience 113, 797–808 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Biotechnology and Biological Science Research Council to B.J.E. (BB/C514307/1), an MRC program grant to C.P.D. (G9403619). M.P. is a Royal Society University Research Fellow. We thank J. Hammer III for providing the myosinVa cDNA, C. Sutherland for the GSK3 inhibitor CT99021, E. Blanc for help with statistical analyses and F. Gertler for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed experiments; M.v.D., M.P., R.H. and B.J.E. performed research and B.J.E. wrote the manuscript.

Corresponding author

Correspondence to Britta J Eickholt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1473 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Diepen, M., Parsons, M., Downes, C. et al. MyosinV controls PTEN function and neuronal cell size. Nat Cell Biol 11, 1191–1196 (2009). https://doi.org/10.1038/ncb1961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing