Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prolyl isomerase Pin1 acts as a switch to control the degree of substrate ubiquitylation

Abstract

Pin1, a conserved eukaryotic peptidyl-prolyl cis/trans isomerase, has important roles in cellular regulation1,2. Because of its activity to switch the conformation of peptidyl-proline bonds in polypeptide chains, Pin1 operates as a binary switch, often in fate-determining pathways. Pin1 activity is usually controlled by substrate phosphorylation1,2, but how Pin1 switches protein fates has been unclear. Here we show that Pin1 controls the degree of substrate ubiquitylation and thereby protein functions. We found that yeast Pin1 (Ess1) is essential for viability because it controls the NF-κB-related Spt23 transcription factor involved in unsaturated fatty-acid synthesis3. High Pin1 activity results in low ubiquitylation of Spt23, which triggers Spt23 precursor processing and hence transcription factor activation. By contrast, decreased Pin1 activity leads to robust Spt23 polyubiquitylation and subsequent proteasomal degradation. Inhibition of Pin1 in mammalian cells changes the ubiquitylation status of the tumour suppressor protein p53 from oligoubiquitylation, which is known to trigger nuclear export4, to polyubiquitylation, which causes nuclear p53 degradation. This suggests that the Pin1 activity is often translated into a fate-determining ubiquitylation switch, and that Pin1 may affect the degree of substrate ubiquitylation in other pathways as well.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ess1 is linked to the OLE pathway.
Figure 2: Spt23 interacts with Ess1 in a phosphorylation-dependent manner in vivo and in vitro.
Figure 3: Ess1 controls the degree of substrate ubiquitylation and thereby determines protein fate.
Figure 4: Pin1 controls the degree of p53 ubiquitylation.

Similar content being viewed by others

References

  1. Lu, K. P. & Zhou, X. Z. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nature Rev. Mol. Cell Biol. 8, 904–916 (2007).

    Article  CAS  Google Scholar 

  2. Wulf, G., Finn, G., Suizu, F. & Lu, K. P. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nature Cell Biol. 7, 435–441 (2005).

    Article  CAS  Google Scholar 

  3. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

    Article  CAS  Google Scholar 

  4. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003).

    Article  CAS  Google Scholar 

  5. Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).

    Article  CAS  Google Scholar 

  6. Piwko, W. & Jentsch, S. Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site. Nature Struct. Mol. Biol. 13, 691–697 (2006).

    Article  CAS  Google Scholar 

  7. Hanes, S. D., Shank, P. R. & Bostian, K. A. Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast 5, 55–72 (1989).

    Article  CAS  Google Scholar 

  8. Lu, K. P. Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem. Sci. 29, 200–209 (2004).

    Article  CAS  Google Scholar 

  9. Lu, P. J., Zhou, X. Z., Shen, M. & Lu, K. P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  10. Yaffe, M. B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  Google Scholar 

  11. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  Google Scholar 

  12. van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell 23, 37–48 (2006).

    Article  CAS  Google Scholar 

  13. Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C. & Lu, K. P. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nature Cell Biol. 3, 793–801 (2001).

    Article  CAS  Google Scholar 

  14. Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W. & Lu, K. P. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 277, 47976–47979 (2002).

    Article  CAS  Google Scholar 

  15. Hsu, T., McRackan, D., Vincent, T. S. & Gert de Couet, H. Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder during oogenesis. Nature Cell Biol. 3, 538–543 (2001).

    Article  CAS  Google Scholar 

  16. Wu, X. et al. The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J. 19, 3727–3738 (2000).

    Article  CAS  Google Scholar 

  17. Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005).

    Article  CAS  Google Scholar 

  18. Pickart, C. M. Ubiquitin in chains. Trends Biochem. Sci. 25, 544–548 (2000).

    Article  CAS  Google Scholar 

  19. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  Google Scholar 

  20. Hoppe, T. Multiubiquitylation by E4 enzymes: 'one size' doesn't fit all. Trends Biochem. Sci. 30, 183–187 (2005).

    Article  CAS  Google Scholar 

  21. Jentsch, S. & Rumpf, S. Cdc48 (p97): a 'molecular gearbox' in the ubiquitin pathway? Trends Biochem. Sci. 32, 6–11 (2007).

    Article  CAS  Google Scholar 

  22. Yu, Z. K., Geyer, R. K. & Maki, C. G. MDM2-dependent ubiquitination of nuclear and cytoplasmic P53. Oncogene 19, 5892–5897 (2000).

    Article  CAS  Google Scholar 

  23. Xirodimas, D. P., Stephen, C. W. & Lane, D. P. Cocompartmentalization of p53 and Mdm2 is a major determinant for Mdm2-mediated degradation of p53. Exp. Cell Res. 270, 66–77 (2001).

    Article  CAS  Google Scholar 

  24. Lai, Z. et al. Human mdm2 mediates multiple mono-ubiquitination of p53 by a mechanism requiring enzyme isomerization. J. Biol. Chem. 276, 31357–31367 (2001).

    Article  CAS  Google Scholar 

  25. Coutts, A. S., Adams, C.,J. & La Thangue, N. B. p53 ubiquitination by Mdm2: a never ending tail? DNA Repair (Amst.) 8, 483–490 (2009).

    Article  CAS  Google Scholar 

  26. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    Article  CAS  Google Scholar 

  27. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    Article  CAS  Google Scholar 

  28. Cao, K., Nakajima, R., Meyer, H. H. & Zheng, Y. The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cell 115, 355–367 (2003).

    Article  CAS  Google Scholar 

  29. Aylon, Y. & Oren, M. Living with p53, dying of p53. Cell 130, 597–600 (2007).

    Article  CAS  Google Scholar 

  30. Harris, S. L. & Levine, A. J. The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908 (2005).

    Article  CAS  Google Scholar 

  31. Hennig, L. et al. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37, 5953–5960 (1998).

    Article  CAS  Google Scholar 

  32. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    Article  CAS  Google Scholar 

  33. Hoppe, T. et al. Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans. Cell 118, 337–349 (2004).

    Article  CAS  Google Scholar 

  34. Gietz, R. D., Triggs-Raine, B., Robbins, A., Graham, K. C. & Woods, R. A. Identification of proteins that interact with a protein of interest: applications of the yeast two-hybrid system. Mol. Cell. Biochem. 172, 67–79 (1997).

    Article  CAS  Google Scholar 

  35. Treier, M., Staszewski, L. M. & Bohmann, D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78, 787–798 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Ammon, A. Buchberger, M. Kalocsay, S. Müller, W. Piwko and C. Pohl for discussions, and M. Kalocsay for the pOLE1 reporter construct. S.J. is supported by the Max Planck Society, the Center for Integrated Protein Science Munich, the RUBICON EU Network of Excellence, and Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

D.S. conducted the experiments. D.S. and S.J. conceived the experiments, discussed the results and prepared the manuscript.

Corresponding author

Correspondence to Stefan Jentsch.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1084 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siepe, D., Jentsch, S. Prolyl isomerase Pin1 acts as a switch to control the degree of substrate ubiquitylation. Nat Cell Biol 11, 967–972 (2009). https://doi.org/10.1038/ncb1908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing