Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of cytokinesis by Rho GTPase flux

Abstract

In animal cells, cytokinesis is powered by a contractile ring of actin filaments (F-actin) and myosin-2. Formation of the contractile ring is dependent on the small GTPase RhoA1,2, which is activated in a precise zone at the cell equator3. It has long been assumed that cytokinesis and other Rho-dependent processes are controlled in a sequential manner, whereby Rho activation by guanine nucleotide exchange factors (GEFs) initiates a particular event, and Rho inactivation by GTPase activating proteins (GAPs) terminates that event. MgcRacGAP is a conserved cytokinesis regulator thought to be required only at the end of cytokinesis4,5. Here we show that GAP activity of MgcRacGAP is necessary early during cytokinesis for the formation and maintenance of the Rho activity zone. Disruption of GAP activity by point mutation results in poorly focused Rho activity zones, whereas complete removal of the GAP domain results in unfocused zones that show lateral instability and/or rapid side-to-side oscillations. We propose that the GAP domain of MgcRacGAP has two unexpected roles throughout cytokinesis: first, it transiently anchors active Rho, and second, it promotes local Rho inactivation, resulting in the constant flux of Rho through the GTPase cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GAP activity of MgcRacGAP is required for cytokinesis in Xenopus embryos.
Figure 2: Testing the GTPase flux model.
Figure 3: Downstream consequences of abnormal GTPase flux.
Figure 4: Rho activity zones in MgcΔGAP-expressing cells oscillate.

Similar content being viewed by others

References

  1. Kishi, K., Sasaki, T., Kuroda, S., Itoh, T. & Takai, Y. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J. Cell Biol. 120, 1187–1195 (1993).

    Article  CAS  Google Scholar 

  2. Drechsel, D. N., Hyman, A. A., Hall, A. & Glotzer, M. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr. Biol. 7, 12–23 (1997).

    Article  CAS  Google Scholar 

  3. Bement, W. M., Benink, H. A. & von Dassow, G. A microtubule-dependent zone of active RhoA during cleavage plane specification. J. Cell Biol. 170, 91–101 (2005).

    Article  CAS  Google Scholar 

  4. Hirose, K., Kawashima, T., Iwamoto, I., Nosaka, T. & Kitamura, T. MgcRacGAP is involved in cytokinesis through associating with mitotic spindle and midbody. J. Biol. Chem. 276, 5821–5828 (2001).

    Article  CAS  Google Scholar 

  5. Jantsch-Plunger, V. et al. CYK-4: A Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol. 149, 1391–1404 (2000).

    Article  CAS  Google Scholar 

  6. Mishima, M., Kaitna, S. & Glotzer, M. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev. Cell 2, 41–54 (2002).

    Article  CAS  Google Scholar 

  7. Yuce, O., Piekny, A. & Glotzer, M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J. Cell Biol. 170, 571–582 (2005).

    Article  Google Scholar 

  8. Somers, W. G. & Saint, R. A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev. Cell 4, 29–39 (2003).

    Article  CAS  Google Scholar 

  9. Minoshima, Y. et al. Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell 4, 549–560 (2003).

    Article  CAS  Google Scholar 

  10. Bement, W. M., Miller, A. L. & von Dassow, G. Rho GTPase activity zones and transient contractile arrays. Bioessays 28, 983–993 (2006).

    Article  CAS  Google Scholar 

  11. Zavortink, M., Contreras, N., Addy, T., Bejsovec, A. & Saint, R. Tum/RacGAP50C provides a critical link between anaphase microtubules and the assembly of the contractile ring in Drosophila melanogaster. J. Cell Sci. 118, 5381–92 (2005).

    Article  CAS  Google Scholar 

  12. Lee, J. S., Kamijo, K., Ohara, N., Kitamura, T. & Miki, T. MgcRacGAP regulates cortical activity through RhoA during cytokinesis. Exp. Cell Res. 293, 275–282 (2004).

    Article  CAS  Google Scholar 

  13. Yamada, T., Hikida, M. & Kurosaki, T. Regulation of cytokinesis by mgcRacGAP in B lymphocytes is independent of GAP activity. Exp. Cell Res. 312, 3517–25 (2006).

    Article  CAS  Google Scholar 

  14. Goldstein, A. Y., Jan, Y. N. & Luo, L. Function and regulation of Tumbleweed (RacGAP50C) in neuroblast proliferation and neuronal morphogenesis. Proc. Natl Acad. Sci. USA 102, 3834–3839 (2005).

    Article  CAS  Google Scholar 

  15. Gregory, S. L. et al. Cell division requires a direct link between microtubule-bound RacGAP and Anillin in the contractile ring. Curr. Biol. 18, 25–9 (2008).

    Article  CAS  Google Scholar 

  16. Ban, R., Irino, Y., Fukami, K. & Tanaka, H. Human mitotic spindle-associated protein PRC1 inhibits MgcRacGAP activity toward Cdc42 during the metaphase. J. Biol. Chem. 279, 16394–16402 (2004).

    Article  CAS  Google Scholar 

  17. Verbrugghe, K. J. & White, J. G. SPD-1 is required for the formation of the spindle midzone but is not essential for the completion of cytokinesis in C. elegans embryos. Curr. Biol. 14, 1755–1760 (2004).

    Article  CAS  Google Scholar 

  18. Benink, H. A. & Bement, W. M. Concentric zones of active RhoA and Cdc42 around single cell wounds. J. Cell Biol. 168, 429–39 (2005).

    Article  CAS  Google Scholar 

  19. Danilchik, M. V. & Brown, E. E. Membrane dynamics of cleavage furrow closure in Xenopus laevis. Dev. Dyn. 237, 565–579 (2008).

    Article  Google Scholar 

  20. Birkenfeld, J. et al. GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev. Cell 12, 699–712 (2007).

    Article  CAS  Google Scholar 

  21. Zhang, B., Chernoff, J. & Zheng, Y. Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA. J. Biol. Chem. 273, 8776–82 (1998).

    Article  CAS  Google Scholar 

  22. Cho, Y. J. et al. Abr and Bcr, two homologous Rac GTPase-activating proteins, control multiple cellular functions of murine macrophages. Mol. Cell Biol. 27, 899–911 (2007).

    Article  CAS  Google Scholar 

  23. Fu, Y. & Galan, J. E. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    Article  CAS  Google Scholar 

  24. Leonard, D. A., Lin, R., Cerione, R. A. & Manor, D. Biochemical studies of the mechanism of action of the Cdc42-GTPase-activating protein. J. Biol. Chem. 273, 16210–16215 (1998).

    Article  CAS  Google Scholar 

  25. Rittinger, K. et al. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693–697 (1997).

    Article  CAS  Google Scholar 

  26. Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J. & Gamblin, S. J. Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389, 758–762 (1997).

    Article  CAS  Google Scholar 

  27. Hu, C. K., Coughlin, M., Field, C. M. & Mitchison, T. J. Cell polarization during monopolar cytokinesis. J. Cell Biol. 181, 195–202 (2008).

    Article  CAS  Google Scholar 

  28. Toure, A. et al. Phosphoregulation of MgcRacGAP in mitosis involves Aurora B and Cdk1 protein kinases and the PP2A phosphatase. FEBS Lett. 582, 1182–8 (2008).

    Article  CAS  Google Scholar 

  29. Fuller, B. G. et al. Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453, 1132–1136 (2008).

    Article  CAS  Google Scholar 

  30. Burkel, B. M., von Dassow, G. & Bement, W. M. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil. Cytoskeleton 64, 822–832 (2007).

    Article  CAS  Google Scholar 

  31. Faire, K. et al. E-MAP-115 (ensconsin) associates dynamically with microtubules in vivo and is not a physiological modulator of microtubule dynamics. J. Cell Sci. 112, 4243–4255 (1999).

    CAS  PubMed  Google Scholar 

  32. Kieserman, E. K., Glotzer, M. & Wallingford, J. B. Developmental regulation of central spindle assembly and cytokinesis during vertebrate embryogenesis. Curr. Biol. 18, 116–123 (2008).

    Article  CAS  Google Scholar 

  33. Woolner, S., O'Brien, L. L., Wiese, C. & Bement, W. M. Myosin-10 and actin filaments are essential for mitotic spindle function. J. Cell Biol. 182, 77–88 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank George von Dassow and Julie Canman for helpful discussions; Chloë Bulinski for the EMTB–3×GFP construct; Todd Stukenberg, Johné Liu and Aaron Straight for providing antibodies; John Wallingford and Esther Kieserman for advice on the midzone staining procedure; and members of the Bement Lab for advice and critical reading of the manuscript. A.L.M. is supported by postdoctoral fellowships from the American Cancer Society and the Helen Hay Whitney Foundation. W.M.B. is supported by an NIH grant.

Author information

Authors and Affiliations

Authors

Contributions

A.L.M. and W.M.B. conceived and designed the experiments; A.L.M. carried out the most of the experiments; W.M.B carried out the midzone staining experiments; A.L.M. wrote the manuscript and prepared the figures; W.M.B. provided feedback throughout the project and revised the manuscript.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3113 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2247 kb)

Supplementary Information

Supplementary Movie 2 (MOV 4853 kb)

Supplementary Information

Supplementary Movie 3 (MOV 2872 kb)

Supplementary Information

Supplementary Movie 4 (MOV 7848 kb)

Supplementary Information

Supplementary Movie 5 (MOV 2299 kb)

Supplementary Information

Supplementary Movie 6 (MOV 2637 kb)

Supplementary Information

Supplementary Movie 7 (MOV 5811 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, A., Bement, W. Regulation of cytokinesis by Rho GTPase flux. Nat Cell Biol 11, 71–77 (2009). https://doi.org/10.1038/ncb1814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing