Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epigenetic transcriptional repression of cellular genes by a viral SET protein

Abstract

Viruses recruit host proteins to secure viral genome maintenance and replication. However, whether they modify host histones directly to interfere with chromatin-based transcription is unknown. Here we report that Paramecium bursaria chlorella virus 1 (PBCV-1) encodes a functional SET domain histone Lys methyltransferase (HKMTase) termed vSET, which is linked to rapid inhibition of host transcription after viral infection. We show that vSET is packaged in the PBCV-1 virion, and that it contains a nuclear localization signal and probably represses host transcription by methylating histone H3 at Lys 27 (H3K27), a modification known to trigger gene silencing in eukaryotes. We also show that vSET induces cell accumulation at the G2/M phase by recruiting the Polycomb repressive complex CBX8 to the methylated H3K27 site in a heterologous system. vSET-like proteins that have H3K27 methylation activity are conserved in chlorella viruses. Our findings suggest a viral mechanism to repress gene transcription by direct modification of chromatin by PBCV-1 vSET.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Presence of vSET in PBCV-1 virions.
Figure 2: Methylation of Chlorella NC64A histone H3K27 by vSET.
Figure 3: Nuclear localization and H3K27 methylation activity of vSET.
Figure 4: Repression of gene transcription by vSET H3K27 methylation activity.
Figure 5: HKMT activity of SET proteins from chlorella viruses.

Similar content being viewed by others

References

  1. Schuettengruber, B. et al. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    Article  CAS  Google Scholar 

  2. Swigut, T. & Wysocka, J. H3K27 demethylases, at long last. Cell 131, 29–32 (2007).

    Article  CAS  Google Scholar 

  3. Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164 (2004).

    Article  CAS  Google Scholar 

  4. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  Google Scholar 

  5. Kuzmichev, A. et al. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  Google Scholar 

  6. Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734 (2007).

    Article  CAS  Google Scholar 

  7. Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450 (2007).

    Article  CAS  Google Scholar 

  8. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  CAS  Google Scholar 

  9. Bernstein, B. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  10. Boyer, L. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  11. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nature Rev. Cancer 6, 846–856 (2006).

    Article  CAS  Google Scholar 

  12. Kleer, C. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  Google Scholar 

  13. De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of Polycomb-mediated gene silencing. Cell 130, 1083–1094 (2007).

    Article  CAS  Google Scholar 

  14. Whitcomb, S., Basu, A., Allis, C. & Bernstein, E. Polycomb group proteins: an evolutionary perspective. Trends Genet. 23, 494–502 (2007).

    Article  CAS  Google Scholar 

  15. Gil, J., Bernard, D. & Peters, G. Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol. 24, 117–125 (2005).

    Article  CAS  Google Scholar 

  16. You, J. et al. Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 117, 349–360 (2004).

    Article  CAS  Google Scholar 

  17. Ghosh, M. & Harter, M. A viral mechanism for remodeling chromatin structure in G0 cells. Mol. Cell 12, 255–260 (2003).

    Article  CAS  Google Scholar 

  18. Mujtaba, S. et al. Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol. Cell 9, 575–586 (2002).

    Article  CAS  Google Scholar 

  19. Dorr, A. et al. Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. EMBO J. 21, 2715–2723 (2002).

    Article  CAS  Google Scholar 

  20. Lachner, M., O'Sullivan, R. & Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124 (2003).

    Article  CAS  Google Scholar 

  21. Qian, C. & Zhou, M. SET domain protein lysine methyltransferases: Structure, specificity and catalysis. Cell Mol. Life Sci. 63, 2755–2763 (2006).

    Article  CAS  Google Scholar 

  22. Manzur, K. & Zhou, M. An archaeal SET domain protein exhibits distinct lysine methyltransferase activity towards DNA-associated protein MC1-α. FEBS Lett. 579, 3859–3865 (2005).

    Article  CAS  Google Scholar 

  23. Alvarez-Venegas, R., Sadder, M., Tikhonov, A. & Avramova, Z. Origin of the bacterial SET domain genes: vertical or horizontal? Mol. Biol. Evol. 24, 482–497 (2007).

    Article  CAS  Google Scholar 

  24. Van Etten, J. Unusual life style of giant chlorella viruses. Annu. Rev. Genet. 37, 153–195 (2003).

    Article  CAS  Google Scholar 

  25. Manzur, K. et al. A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nature Struct. Biol. 10, 187–196 (2003).

    Article  CAS  Google Scholar 

  26. Qian, C. et al. Structural insights of the specificity and catalysis of a viral histone H3 lysine 27 methyltransferase. J. Mol. Biol. 359, 86–96 (2006).

    Article  CAS  Google Scholar 

  27. Min, J., Zhang, Y. & Xu, R. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828 (2003).

    Article  CAS  Google Scholar 

  28. Yap, K. & Zhou, M. Structure and function of protein modules in chromatin biology. Results Probl. Cell Differ. 41, 1–23 (2006).

    Article  CAS  Google Scholar 

  29. Bracken, A. P. et al. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  Google Scholar 

  30. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  CAS  Google Scholar 

  31. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  Google Scholar 

  32. Schuster, A. et al. Characterization of viruses infecting a eukaryotic chlorella-like green alga. Virology 150, 170–177 (1986).

    Article  CAS  Google Scholar 

  33. Kang, M. et al. Genetic diversity in chlorella viruses flanking kcv, a gene that encodes a potassium ion channel protein. Virology 326, 150–159 (2004).

    Article  CAS  Google Scholar 

  34. Nishio, H. & Walsh, M. CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc. Natl Acad. Sci. USA 101, 11257–11262 (2004).

    Article  CAS  Google Scholar 

  35. Svingen, T. & Tonissen, K. F. Altered HOX gene expression in human skin and breast cancer cells. Cancer Biol. Ther. 2, 518–523 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.W. Enquist for the Us9–GFP construct, M. Ptashne for the Gal4-DBD construct, P. Traber for the firefly luciferase construct, R. Slany for the HOX7A luciferase construct, I. V. Agarkova for the results used in Fig. 1a, and M. Walsh for helpful discussions. Fluorescence microscopy imaging was performed at the Mount Sinai Microscopy Shared Resource Facility supported in part with funding from NIH-NCI shared resources grant. This work was supported by grants from the National Institutes of Health (M.-M.Z. and J.L.V.E.).

Author information

Authors and Affiliations

Authors

Contributions

S.M. characterized vSET function in mammalian cells; K.L.M. performed the in vitro histone Lys methylation study of vSET and vSET-like proteins; J.R.G. and M.K. conducted the study of PBCV-1 infection of Chlorella cells and vset gene probing of chlorella viruses; M.-M.Z. and J.L.V.E. directed the project and all authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to James L. Van Etten or Ming-Ming Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, Supplementary Tables S1, S2, S3, S4 and Supplementary Methods (PDF 6251 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujtaba, S., Manzur, K., Gurnon, J. et al. Epigenetic transcriptional repression of cellular genes by a viral SET protein. Nat Cell Biol 10, 1114–1122 (2008). https://doi.org/10.1038/ncb1772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing