Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Talin depletion reveals independence of initial cell spreading from integrin activation and traction

Abstract

Cell spreading, adhesion and remodelling of the extracellular matrix (ECM) involve bi-directional signalling and physical linkages between the ECM, integrins and the cell cytoskeleton1,2,3. The actin-binding proteins talin1 and 2 link ligand-bound integrins to the actin cytoskeleton and increase the affinity of integrin for the ECM4,5,6. Here we report that depletion of talin2 in talin1-null (talin1−/−) cells did not affect the initiation of matrix-activated spreading or Src family kinase (SFK) activation, but abolished the ECM–integrin–cytoskeleton linkage and sustained cell spreading and adhesion. Specifically, focal adhesion assembly, focal adhesion kinase (FAK) signalling and traction force generation on substrates were severely affected. The talin1 head domain restored β1 integrin activation but only full-length talin1 restored the ECM–cytoskeleton linkage and normal cytoskeleton organization. Our results demonstrate three biochemically distinct steps in fibronectin-activated cell spreading and adhesion: 1) fibronectin–integrin binding and initiation of spreading, 2) fast cell spreading and 3) focal adhesion formation and substrate traction. We suggest that talin is not required for initial cell spreading. However, talin provides the important mechanical linkage between ligand-bound integrins and the actin cytoskeleton required to catalyse focal adhesion-dependent pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Talin2 depletion in talin1−/− cells does not affect initial spreading on fibronectin but causes cell rounding.
Figure 2: Spread talin-deficient cells show defects in focal adhesion formation and adhesion to substrates.
Figure 3: Talin1 head activates β1 integrin but does not rescue focal adhesion formation.
Figure 4: Talin depletion impairs FAK-Tyr 397 phosphorylation upon adhesion to fibronectin.
Figure 5: Talin couples actomyosin contractility to the substrate and facilitates the distribution of microtubules.

Similar content being viewed by others

References

  1. Sheetz, M. P., Felsenfeld, D., Galbraith, C. G. & Choquet, D. Cell migration as a five-step cycle. Biochem. Soc. Symp. 65, 233–243 (1999).

    CAS  PubMed  Google Scholar 

  2. DeMali, K. A., Wennerberg, K. & Burridge, K., Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15, 572–582 (2003).

    Article  CAS  Google Scholar 

  3. Shattil, S. J., Integrins and Src: dynamic duo of adhesion signaling. Trends Cell Biol. 15, 399–403 (2005).

    Article  CAS  Google Scholar 

  4. Critchley, D. R. & Gingras, A. R., Talin at a glance. J. Cell Sci. 121, 1345–1347 (2008).

    Article  CAS  Google Scholar 

  5. Jiang, G. et al. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).

    Article  CAS  Google Scholar 

  6. Calderwood, D. A. et al. The Talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074 (1999).

    Article  CAS  Google Scholar 

  7. Priddle, H. et al. Disruption of the talin gene compromises focal adhesion assembly in undifferentiated but not differentiated embryonic stem cells. J. Cell Biol. 142, 1121–1133 (1998).

    Article  CAS  Google Scholar 

  8. Monkley, S. J., Pritchard, C. A. & Critchley, D. R., Analysis of the mammalian talin2 gene TLN2. Biochem. Biophys. Res. Commun. 286, 880–885 (2001).

    Article  CAS  Google Scholar 

  9. Small, J. V., Rottner, K., Kaverina, I. & Anderson, K. I., Assembling an actin cytoskeleton for cell attachment and movement. Biochim. Biophys. Acta 1404, 271–281 (1998).

    Article  CAS  Google Scholar 

  10. Bear, J. E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    Article  CAS  Google Scholar 

  11. Tadokoro, S. et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science 302, 103–106 (2003).

    Article  CAS  Google Scholar 

  12. Tanentzapf, G. & Brown, N. H., An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nature Cell Biol. 8, 601–606 (2006).

    Article  CAS  Google Scholar 

  13. Moes, M. et al. The integrin binding site 2 (IBS2) in the talin rod domain is essential for linking integrin β subunits to the cytoskeleton. J. Biol. Chem. 282, 17280–17288 (2007).

    Article  CAS  Google Scholar 

  14. Lenter, M. et al. A monoclonal antibody against an activation epitope on mouse integrin chain beta 1 blocks adhesion of lymphocytes to the endothelial integrin α6 β1. Proc. Natl Acad. Sci. USA 90, 9051–9055 (1993).

    Article  CAS  Google Scholar 

  15. Galbraith, C. G., Yamada, K. M. & Galbraith, J. A., Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007).

    Article  CAS  Google Scholar 

  16. Schlaepfer, D. D., Hauck, C. R. & Sieg, D. J., Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 71, 435–478 (1999).

    Article  CAS  Google Scholar 

  17. von Wichert, G. et al. RPTP-α acts as a transducer of mechanical force on α5/β3-integrin-cytoskeleton linkages. J. Cell Biol. 161, 143–153 (2003).

    Article  CAS  Google Scholar 

  18. Di Florio, A. et al. Src family kinase activity regulates adhesion, spreading and migration of pancreatic endocrine tumour cells. Endocr. Relat. Cancer 14, 111–124 (2007).

    Article  CAS  Google Scholar 

  19. Borowsky, M. L. & Hynes, R. O., Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles. J. Cell Biol. 143, 429–442 (1998).

    Article  CAS  Google Scholar 

  20. Sawada, Y. & Sheetz, M. P., Force transduction by Triton cytoskeletons. J. Cell Biol. 156, 609–625 (2002).

    Article  CAS  Google Scholar 

  21. Bershadsky, A. D. et al. Assembly and mechanosensory function of focal adhesions: experiments and models. Eur. J. Cell Biol. 85, 165–173 (2006).

    Article  CAS  Google Scholar 

  22. Giannone, G. et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431–443 (2004).

    Article  CAS  Google Scholar 

  23. Hotulainen, P. & Lappalainen, P., Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  Google Scholar 

  24. Burton, K., Park, J. H. & Taylor, D. L., Keratocytes generate traction forces in two phases. Mol. Biol. Cell 10, 3745–3765 (1999).

    Article  CAS  Google Scholar 

  25. Burnette, D. T. et al. Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones. Nature Cell Biol. 9, 1360–1369 (2007).

    Article  CAS  Google Scholar 

  26. Moser, M. et al. Kindlin-3 is essential for integrin activation and platelet aggregation. Nature Med. 14, 325–330 (2008).

    Article  CAS  Google Scholar 

  27. Dubin-Thaler, B. J., Giannone, G., Dobereiner, H. G. & Sheetz, M. P., Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and STEPs. Biophys. J. 86, 1794–1806 (2004).

    Article  CAS  Google Scholar 

  28. Bailly, M., Condeelis, J. S. & Segall, J. E., Chemoattractant-induced lamellipod extension. Microsc. Res. Tech. 43, 433–443 (1998).

    Article  CAS  Google Scholar 

  29. Ponti, A. et al. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  Google Scholar 

  30. Hu, K. et al. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. De Camilli for talin2-specific antibody, N. Bate for various talin1 constructs and A.J. Woods for the talin1ABS construct. We thank N. Gauthier, T. Perez and O. Rossier for helpful discussions, and the continuing help from all members of the Sheetz laboratory. Work in the laboratory of M.P.S. was supported by the National Institutes of Health through the NIH Roadmap for Medical Research (PN2 EY016586) and X.Z. was supported by GM-003267. Work in the D.R.C. laboratory was funded by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. performed all the experiments in M.P.S. lab with significant support from G.J. and Y.C.; S.J.M. provided the cell line and important information; D.R.C. provided important direction on the project.

Corresponding author

Correspondence to Michael P. Sheetz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6 and S7 (PDF 894 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1260 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2818 kb)

Supplementary Information

Supplementary Movie 3 (MOV 1810 kb)

Supplementary Information

Supplementary Movie 4 (MOV 2524 kb)

Supplementary Information

Supplementary Movie 5 (MOV 2707 kb)

Supplementary Information

Supplementary Movie 6 (MOV 720 kb)

Supplementary Information

Supplementary Movie 7 (MOV 1340 kb)

Supplementary Information

Supplementary Movie 8 (MOV 2915 kb)

Supplementary Information

Supplementary Movie 9 (MOV 1094 kb)

Supplementary Information

Supplementary Movie 10 (MOV 2455 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Jiang, G., Cai, Y. et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol 10, 1062–1068 (2008). https://doi.org/10.1038/ncb1765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing