Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of Rad52 recombination activity by double-strand break-induced SUMO modification

Abstract

Homologous recombination is essential for genetic exchange, meiosis and error-free repair of double-strand breaks1. Central to this process is Rad52, a conserved homo-oligomeric ring-shaped protein, which mediates the exchange of the early recombination factor RPA by Rad51 and promotes strand annealing2,3. Here, we report that Rad52 of Saccharomyces cerevisiae is modified by the ubiquitin-like protein SUMO, primarily at two sites that flank the conserved Rad52 domain. Sumoylation is induced on DNA damage and triggered by Mre11–Rad50–Xrs2 (MRX) complex-governed double-strand breaks (DSBs). Although sumoylation-defective Rad52 is largely recombination proficient, mutant analysis revealed that the SUMO modification sustains Rad52 activity and concomitantly shelters the protein from accelerated proteasomal degradation. Furthermore, our data indicate that sumoylation becomes particularly relevant for those Rad52 molecules that are engaged in recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rad52 is modified by SUMO
Figure 2: Regulation of Rad52 sumoylation in meiosis.
Figure 3: Induction of Rad52 sumoylation by DNA-damaging agents.
Figure 4: Recombination phenotypes of sumoylation-defective rad52 mutants.
Figure 5: Rad52 activity and protein stability.

Similar content being viewed by others

References

  1. van Gent, D. C., Hoeijmakers, J. H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet. 2, 196–206 (2001).

    Article  CAS  Google Scholar 

  2. Symington, L. S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66, 630–670 (2002).

    Article  CAS  Google Scholar 

  3. Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    Article  CAS  Google Scholar 

  4. Johnson, E. S. Protein modification by sumo. Annu. Rev. Biochem. 73, 355–382 (2004).

    Article  CAS  Google Scholar 

  5. Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).

    Article  CAS  Google Scholar 

  6. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  Google Scholar 

  7. Sacher, M., Pfander, B. & Jentsch, S. Identification of SUMO-protein conjugates. Methods Enzymol. 399, 392–404 (2005).

    Article  CAS  Google Scholar 

  8. Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).

    Article  CAS  Google Scholar 

  9. Ho, J. C., Warr, N. J., Shimizu, H. & Watts, F. Z. SUMO modification of Rad22, the Schizosaccharomyces pombe homologue of the recombination protein Rad52. Nucleic Acids Res. 29, 4179–4186 (2001).

    Article  CAS  Google Scholar 

  10. Johnson, E. S. & Blobel, G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981–994 (1999).

    Article  CAS  Google Scholar 

  11. Kagawa, W. et al. Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol. Cell 10, 359–371 (2002).

    Article  CAS  Google Scholar 

  12. San-Segundo, P. A. & Roeder, G. S. Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97, 313–324 (1999).

    Article  CAS  Google Scholar 

  13. Schwacha, A. & Kleckner, N. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123–1135 (1997).

    Article  CAS  Google Scholar 

  14. Roeder, G. S. & Bailis, J. M. The pachytene checkpoint. Trends Genet. 16, 395–403 (2000).

    Article  CAS  Google Scholar 

  15. Hong, E. J. & Roeder, G. S. A role for Ddc1 in signaling meiotic double-strand breaks at the pachytene checkpoint. Genes Dev. 16, 363–376 (2002).

    Article  CAS  Google Scholar 

  16. Ramotar, D. & Wang, H. Protective mechanisms against the antitumor agent bleomycin: lessons from Saccharomyces cerevisiae. Curr. Genet. 43, 213–224 (2003).

    Article  CAS  Google Scholar 

  17. Schiestl, R. H., Prakash, S. & Prakash, L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124, 817–831 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Torres, J. Z., Schnakenberg, S. L. & Zakian, V. A. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell Biol. 24, 3198–3212 (2004).

    Article  CAS  Google Scholar 

  19. Schmidt, K. H. & Kolodner, R. D. Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol. Cell Biol. 24, 3213–3226 (2004).

    Article  CAS  Google Scholar 

  20. Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nature Genet. 25, 192–194 (2000).

    Article  CAS  Google Scholar 

  21. Ooi, S. L., Shoemaker, D. D. & Boeke, J. D. DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nature Genet. 35, 277–286 (2003).

    Article  CAS  Google Scholar 

  22. Torres, J. Z., Bessler, J. B. & Zakian, V. A. Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes Dev. 18, 498–503 (2004).

    Article  CAS  Google Scholar 

  23. Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1–Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003).

    Article  CAS  Google Scholar 

  24. Bai, Y. & Symington, L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10, 2025–2037 (1996).

    Article  CAS  Google Scholar 

  25. Krogan, N. J. et al. Proteasome involvement in the repair of DNA double-strand breaks. Mol. Cell 16, 1027–1034 (2004).

    Article  CAS  Google Scholar 

  26. Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2, 233–239 (1998).

    Article  CAS  Google Scholar 

  27. Klenk, C., Humrich, J., Quitterer, U. & Lohse, M. J. SUMO-1 controls the protein stability and the biological function of phosducin. J. Biol. Chem. 281, 8357–8364 (2006).

    Article  CAS  Google Scholar 

  28. Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005).

    Article  CAS  Google Scholar 

  29. Muller, S. et al. c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem. 275, 13321–13329 (2000).

    Article  CAS  Google Scholar 

  30. Bartke, T., Pohl, C., Pyrowolakis, G. & Jentsch, S. Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol. Cell 14, 801–811 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Cramer and J. Rech for technical assistance, and D. Bishop, J. Haber, L. Hartwell, R. Kanaar, F. Klein, H. L. Klein, N. Kleckner, M. Knop, S. Müller, N. Sugawara and L. S. Symington for materials and advice. This work is supported by the Max Planck Society, Deutsche Krebshhilfe, Deutsche Forschungsgemeinschaft and Fonds der chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jentsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, Supplementary Table 1 and Supplementary Methods (PDF 2892 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacher, M., Pfander, B., Hoege, C. et al. Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat Cell Biol 8, 1284–1290 (2006). https://doi.org/10.1038/ncb1488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing