Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function

Abstract

Poly(ADP-ribose) (PAR) is a large, negatively charged post-translational modification that is produced by polymerization of NAD+ by PAR polymerases (PARPs)1. There are at least 18 PARPs in the human genome, several of which have functions that are unknown1. PAR modifications are dynamic; PAR structure depends on the balance between synthesis and hydrolysis by PAR glycohydrolase2. We previously found that PAR is enriched in vertebrate somatic-cell mitotic spindles and demonstrated a requirement for PAR in the assembly of Xenopus egg extract spindles3. Here, we knockdown all characterized PARPs using RNA interference (RNAi), and identify tankyrase-1 as the PARP that is required for mitosis. Tankyrase-1 localizes to mitotic spindle poles, to telomeres4 and to the Golgi apparatus5. Tankyrase-1 RNAi was recently shown to result in mitotic arrest, with abnormal chromosome distributions and spindle morphology observed — data that is interpreted as evidence of post-anaphase arrest induced by failure of telomere separation6. We show that tankyrase-1 RNAi results in pre-anaphase arrest, with intact sister-chromatid cohesion. We also demonstrate a requirement for tankyrase-1 in the assembly of bipolar spindles, and identify the spindle-pole protein NuMA7 as a substrate for covalent modification by tankyrase-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tankyrase-1 PARP activity is required for spindle structure and function.
Figure 2: Tankyrase-1 knockdown activates the Mad2-dependent spindle checkpoint and results in pre-anaphase mitotic arrest.
Figure 3: Tankyrase-1 knockdown results in centrosome-independent spindle-pole assembly.
Figure 4: Tankyrase-1 is required for spindle-pole function and spindle bipolarity and structure.
Figure 5: The spindle-pole protein NuMA is PARsylated by tankyrase-1 in vivo.

Similar content being viewed by others

References

  1. Ame, J. C., Spenlehauer, C. & de Murcia, G. The PARP superfamily. Bioessays 26, 882–893 (2004).

    Article  CAS  Google Scholar 

  2. Davidovic, L., Vodenicharov, M., Affar, E. B. & Poirier, G. G. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp. Cell Res. 268, 7–13 (2001).

    Article  CAS  Google Scholar 

  3. Chang, P., Jacobson, M. K. & Mitchison, T. J. Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432, 645–649 (2004).

    Article  CAS  Google Scholar 

  4. Smith, S. & de Lange, T. Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. J. Cell Sci. 112 (Pt 21), 3649–3656 (1999).

    CAS  PubMed  Google Scholar 

  5. Chi, N. W. & Lodish, H. F. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J. Biol. Chem. 275, 38437–38444 (2000).

    Article  CAS  Google Scholar 

  6. Dynek, J. N. & Smith, S. Resolution of sister telomere association is required for progression through mitosis. Science 304, 97–100 (2004).

    Article  CAS  Google Scholar 

  7. Wittmann, T., Hyman, A. & Desai, A. The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biol. 3, E28–E34 (2001).

    Article  CAS  Google Scholar 

  8. Rieder, C. L. & Maiato, H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7, 637–651 (2004).

    Article  CAS  Google Scholar 

  9. Gurley, L. R., D'Anna, J. A., Barham, S. S., Deaven, L. L. & Tobey, R. A. Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur. J. Biochem. 84, 1–15 (1978).

    Article  CAS  Google Scholar 

  10. Murray, A. W. & Kirschner, M. W. Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280 (1989).

    Article  CAS  Google Scholar 

  11. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

    Article  CAS  Google Scholar 

  12. Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242–246 (1996).

    Article  CAS  Google Scholar 

  13. Abrieu, A., Kahana, J. A., Wood, K. W. & Cleveland, D. W. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102, 817–826 (2000).

    Article  CAS  Google Scholar 

  14. Gaglio, T., Saredi, A. & Compton, D. A. NuMA is required for the organization of microtubules into aster-like mitotic arrays. J. Cell Biol. 131, 693–708 (1995).

    Article  CAS  Google Scholar 

  15. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    Article  CAS  Google Scholar 

  16. Mitchison, T. J. et al. Bipolarization and poleward flux correlate during Xenopus extract spindle assembly. Mol. Biol. Cell 15, 5603–5615 (2004).

    Article  CAS  Google Scholar 

  17. Hut, H. M. et al. Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol. Biol. Cell 14, 1993–2004 (2003).

    Article  CAS  Google Scholar 

  18. DeBonis, S. et al. In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol. Cancer Ther. 3, 1079–1090 (2004).

    CAS  PubMed  Google Scholar 

  19. Slama, J. T. et al. Specific inhibition of poly(ADP-ribose) glycohydrolase by adenosine diphosphate (hydroxymethyl)pyrrolidinediol. J. Med. Chem. 38, 389–393 (1995).

    Article  CAS  Google Scholar 

  20. Sbodio, J. I. & Chi, N. W. Identification of a tankyrase-binding motif shared by IRAP, TAB182, and human TRF1 but not mouse TRF1. NuMA contains this RXXPDG motif and is a novel tankyrase partner. J. Biol. Chem. 277, 31887–31892 (2002).

    Article  CAS  Google Scholar 

  21. Stearns, T., Evans, L. & Kirschner, M. Gamma-tubulin is a highly conserved component of the centrosome. Cell 65, 825–836 (1991).

    Article  CAS  Google Scholar 

  22. Sawin, K. E., LeGuellec, K., Philippe, M. & Mitchison, T. J. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359, 540–543 (1992).

    Article  CAS  Google Scholar 

  23. Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M. & Saunders, W. S. Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127–129 (2005).

    Article  CAS  Google Scholar 

  24. Bryant, H. E. & Helleday, T. Poly(ADP-ribose) polymerase inhibitors as potential chemotherapeutic agents. Biochem. Soc. Trans. 32, 959–961 (2004).

    Article  CAS  Google Scholar 

  25. Kameoka, M. et al. RNA interference directed against Poly(ADP-Ribose) polymerase 1 efficiently suppresses human immunodeficiency virus type 1 replication in human cells. J. Virol. 78, 8931–8934 (2004).

    Article  CAS  Google Scholar 

  26. Boyles, J., Anderson, L. & Hutcherson, P. A new fixative for the preservation of actin filaments: fixation of pure actin filament pellets. J. Histochem. Cytochem. 33, 1116–1128 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Perlman for critical evaluation of the manuscript. We thank A. Groen, P. Ohi and V. Kickhoefer for antibodies, and D. Compton for antibodies and DNA. We thank T. De Lange for tankyrase-1 clones. This work was supported by a National Institutes of Health grant (GM39565) to T.J.M. and a National Institute of Health Postdoctoral fellowship to P.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 536 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, P., Coughlin, M. & Mitchison, T. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol 7, 1133–1139 (2005). https://doi.org/10.1038/ncb1322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1322

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing