Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint

Abstract

In many cells the timing of entry into mitosis is controlled by the balance between the activity of inhibitory Wee1-related kinases (Swe1p in budding yeast) and the opposing effect of Cdc25-related phosphatases (Mih1p in budding yeast) that act on the cyclin-dependent kinase Cdc2 (Cdc28p in budding yeast)1. Wee1 and Cdc25 are key elements in the G2 arrest mediated by diverse checkpoint controls2. In budding yeast, a `morphogenesis checkpoint' that involves Swe1p and Mih1p delays mitotic activation of Cdc28p3. Many environmental stresses (such as shifts in temperature or osmolarity) provoke transient depolarization of the actin cytoskeleton, during which bud construction is delayed while cells adapt to environmental conditions. During this delay, the morphogenesis checkpoint halts the cell cycle in G2 phase until actin can repolarize and complete bud construction, thus preventing the generation of binucleate cells4. A similar G2 delay can be triggered by mutations or drugs that specifically impair actin organization5, indicating that it is probably actin disorganization itself, rather than specific environmental stresses, that triggers the delay. The G2 delay involves stabilization of Swe1p in response to various actin perturbations6, although this alone is insufficient to produce a long G2 delay7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Checkpoint defect in mpk1Δ cells.
Figure 2: Activation of Mpk1p in response to actin perturbation.
Figure 3: Role of components of the cell-integrity pathway in the morphogenesis checkpoint.
Figure 4: Genetic interaction of MPK1 with cell-cycle control elements.

Similar content being viewed by others

References

  1. Morgan, D. O. Annu. Rev. Cell Dev. Biol. 13, 261– 291 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Russell, P. Trends Biochem. Sci. 23, 399–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Lew, D. J. & Reed, S. I. J. Cell Biol. 129, 739–749 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Lew, D. J. Curr. Opin. Genet. Dev. 10, 47–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. McMillan, J. N., Sia, R. A. L. & Lew, D. J. J. Cell Biol. 142, 1487– 1499 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sia, R. A. L., Bardes, E. S. G. & Lew, D. J. EMBO J. 17, 6678– 6688 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McMillan, J. N. et al. Mol. Cell. Biol. 19, 6929– 6939 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferrell, J. E. Jr Curr. Top. Dev. Biol. 33, 1– 60 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Marshall, C. J. Curr. Opin. Genet. Dev. 4, 82–89 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Gustin, M. C., Albertyn, J., Alexander, M. & Davenport, K. Microbiol. Mol. Biol. Rev. 62, 1264– 1300 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McMillan, J. N., Sia, R. A. L., Bardes, E. S. G. & Lew, D. J. Mol. Cell. Biol. 19, 5981–5990 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heinisch, J. J., Lorberg, A., Schmitz, H. P. & Jacoby, J. J. Mol. Microbiol. 32, 671–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Kamada, Y., Jung, U. S., Piotrowski, J. & Levin, D. E. Genes Dev. 9, 1559–1571 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Martin, H., Rodriguez-Pachon, J. M., Ruiz, C., Nombela, C. & Molina, M. J. Biol. Chem. 275, 1511–1519 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Marini, N. J. et al. EMBO J. 15, 3040–3052 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zarzov, P., Mazzoni, C. & Mann, C. EMBO J. 15, 83– 91 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guthrie, C. & Fink, G. R. (eds) Guide to Yeast Genetics and Molecular Biology (Academic Press, San Diego, 1991).

    Google Scholar 

  18. Ausubel, F. M. et al. (eds) Current Protocols in Molecular Biology (John Wiley and Sons, New York, 1995).

    Google Scholar 

  19. Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E. & Gustin, M. C. Science 259, 1760–1763 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Russell, P., Moreno, S. & Reed, S. I. Cell 57, 295– 303 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Ma, X-J., Lu, Q. & Grunstein, M. Genes Dev. 10, 1327– 1340 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Stuart, D. & Wittenberg, C. Mol. Cell. Biol. 14, 4788–4801 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Irie, K. et al. Mol. Cell. Biol. 13, 3076– 3083 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buehrer, B. M. & Errede, B. Mol. Cell. Biol. 17, 6517–6525 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gehrung, S. & Snyder, M. J. Cell Biol. 111, 1451–1464 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. Nucleic Acids Res. 21 , 3329–3330 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sikorski, R. S. & Hieter, P. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wach, A. Yeast 12, 259–265 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  29. Goldstein, A. L. & McCusker, J. H. Yeast 15, 1541–1553 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Gietz, R. D. & Sugino, A. Gene 74, 527 –534 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Stueland, C. S., Lew, D. J., Cismowski, M. J. & Reed, S. I. Mol. Cell. Biol. 13, 3744–3755 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watanabe, Y., Takaesu, G., Hagiwara, M., Irie, K. & Matsumoto, K. Mol. Cell. Biol. 17 , 2615–2623 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kamada, Y. et al. J. Biol. Chem. 271, 9193– 9196 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Ozaki, K. et al. EMBO J. 15, 2196–2207 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheu, Y. J., Santos, B., Fortin, N., Costigan, C. & Snyder, M. Mol. Cell. Biol. 18, 4053– 4069 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Zyla for help with strain construction, S. Kornbluth for critical reading of the manuscript, and G. Ammerer, R. Ballester, B. Errede, J. Heitman, D. Levin, N. Marini, J. McCusker, J. McMillan, M. Snyder, L. Stolz, K. Irie, K. Matsumoto, D. Stuart and C. Wittenberg for strains, plasmids and oligonucleotides. We also thank J. McMillan, K. Swenson and members of the Lew laboratory for discussions. This work was supported by a grant from the US Public Health Service grant to D.J.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Lew.

Supplementary information

Table 1

Yeast strains used in this study. (PDF 36 kb)

Table 2

Oligonucleotides used in this study (PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, J., Bardes, E., Ohya, Y. et al. A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint . Nat Cell Biol 3, 417–420 (2001). https://doi.org/10.1038/35070104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing