Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Mirror-design of L-oligonucleotide ligands binding to L-arginine

Abstract

The high affinity and selectivity of nucleic acid ligands have clearly demonstrated that RNA can be targeted to a variety of molecules. In practice, however, the use of unmodified aptamers is impeded by the low stability of RNA in biological fluids. Here we describe the mirror-design of a stable 38-mer L-oligoribonucleotide ligand that binds to L-arginine. This L-RNA ligand was also able to bind to a short peptide containing the basic region of the human immunodeficiency virus type-1 Tat-protein. The L-RNA ligand displayed the expected stability in human serum. These findings may contribute to the identification of novel diagnostics and pharmaceuticals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gold, L., Polisky, B., Uhlenbeck, O.C. and Yarus, M. 1995. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64: 763–797.

    Article  CAS  Google Scholar 

  2. Ellington, A.D. and Szostak, J.W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822.

    Article  CAS  Google Scholar 

  3. Robertson, D.L. and Joyce, G.F. 1990. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344: 467–468.

    Article  CAS  Google Scholar 

  4. Tuerk, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510.

    Article  CAS  Google Scholar 

  5. Lin, Y.L., Qiu, Q., Gill, Y.L. and Jayasena, S.D. 1994. Modified RNA sequence pools for in vitro selection. Nucleic Acids Res. 22: 5229–5234.

    Article  CAS  Google Scholar 

  6. Jellinek, D., Green, L.S., Bell, C., Lynott, O.K., Gill, N., Vargeese, C. et al. 1995. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34: 11363–11372.

    Article  CAS  Google Scholar 

  7. Green, L., Waugh, S., Binkley, J.P., Hostomska, Z., Hostomsky, Z. and Tuerk, C. 1995. Comprehensive chemical modification interference and nucleotide substitution analysis of an RNA pseudoknot inhibitor to HIV-1 reverse transcriptase. J. Mol. Biol. 247: 60–68.

    Article  CAS  Google Scholar 

  8. Green, L., Jellinek, D., Bell, C., Beebe, L.A., Feistner, B.D., Gill, S.C. et al. 1995. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chemistry and Biology 2: 683–695.

    Article  CAS  Google Scholar 

  9. Milton, R.C. deL., Milton, S.C.F., and Kent, S.B.H. 1992. Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show demonstration of reciprocal chiral substrate specificity. Science 256: 1445–1448.

    Article  CAS  Google Scholar 

  10. Connell, G.J., Illangesekare, M. and Yarus, M. 1993. Three small ribooligonucleotides with specific arginine sites. Biochemistry 32: 5497–5502.

    Article  CAS  Google Scholar 

  11. Famulok, M. 1994. Molecular recognition of amino acids by RNA-aptamers: an L-citrulline binding RNA motif and its evolution into an L-arginine binder. J. Am. Chem. Soc. 116: 1698–1706.

    Article  CAS  Google Scholar 

  12. Klußmann, S., Nolte, A., Bald, R., Erdmann, V.A. and Fürste, J.P. 1996. Mirror-image RNA that binds D-adenosine. Nature Biotechnology 14: 1112–1115.

    Article  Google Scholar 

  13. Burd, C.G. and Dreyfuss, G. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621.

    Article  CAS  Google Scholar 

  14. Greenbaum, N.L. 1996. How Tat targets TAR: structure of the BIV peptide-RNA complex. Structure 4: 5–9.

    Article  CAS  Google Scholar 

  15. Carter, C.W., Jr., and Kraut, J. 1974. A proposed model for interaction of polypeptides with RNA. Proc. Natl. Acad. Sci. USA 71: 283–287.

    Article  CAS  Google Scholar 

  16. Geiger, A., Burgstaller, P., von der Eltz, H., Roeder, A., and Famulok, M. 1996. RNA aptamers that bind L-arginine with submicromolar dissociation constants and high enantioselectivity. Nucl. Acids Res. 24: 1029–1036.

    Article  CAS  Google Scholar 

  17. Nieuwlandt, D., Wecker, M. and Gold, L. 1995. In vitro selection of RNA ligands to substance P. Biochemistry 34: 5651–5659.

    Article  CAS  Google Scholar 

  18. Muir, T.W. 1995. A chemical approach to the construction of multimeric protein assemblies. Structure 3: 649–652.

    Article  CAS  Google Scholar 

  19. Prudent, J.R., Uno, T. and Schultz, P.G. 1994. Expanding the scope of RNA catalysis. Science 264: 1924–1927.

    Article  CAS  Google Scholar 

  20. Chapman, K.B. and Szostak, J.W. 1994. In vitro selection of catalytic RNAs. Curr. Opinion Struct. Biol. 4: 618–622.

    Article  CAS  Google Scholar 

  21. Jenison, R.D., Gill, S.C., Pardi, A. and Polisky, B. 1994. High-resolution molecular discrimination by RNA. Science 263: 1425–1429.

    Article  CAS  Google Scholar 

  22. Nolte, A., Klußman, S., Lorenz, S., Bald, R., Betzel, C., Dauter, Z. et al. 1995. Crystallization and preliminary diffraction studies of the structural domain E of Thermus flavus 5S rRNA. FEBS Lett. 374: 292–294.

    Article  CAS  Google Scholar 

  23. Holý, A. and Sorm, F. 1969. Preparation of some ß-L-ribonucleosides, their 2′(3′)-phosphates and 2′,3′-cyclic phosphates. Collect. Czech. Chem. Commun. 34: 3383–3401.

    Article  Google Scholar 

  24. Holý, A. 1972. Nucleic acid components and their analogues. CLIII. Preparation of 2′-deoxy-L-ribonucleosides of the pyrimidine series. Collect. Czech. Chem. Commun. 37: 4072–4087.

    Article  Google Scholar 

  25. Holý, A. 1973. Nucleic acid components and their analogues. CLV. Mechanism of anomalous opening of the 02,2′-anhydro bond in uracil cyclonucleosides. Collect. Czech. Chem. Commun. 38: 423–427.

    Article  Google Scholar 

  26. Vorbrüggen, H., Krolikiewicz, K. and Bennua, B. 1981. Nucleoside syntheses, XXII. Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem.Ber. 114: 1234–1255.

    Article  Google Scholar 

  27. Zou, R. and Robins, M.J. 1987. High-yield regioselective synthesis of 9-glycosyl guanine nucleosides and analogues via coupling with 2-N-acetyl-6-O-diphenyl-carbamoylguanine. Can. J. Chem. 65: 1436–1437.

    Article  CAS  Google Scholar 

  28. Abe, Y., Takizawa, T. and Kunieda, T. 1980. Epimerization of aldoses catalyzed by dioxobis(2,4-pentenedionato-O,O′)-molybdenum (VI). An improved procedure for C-2 epimer preparation. Chem. Pharm. Bull. 28: 1324–1326.

    Article  CAS  Google Scholar 

  29. Recondo, E.F. and Rinderknecht, H. 1959. Eine neue, einfache Synthese des 1-O-Acetyl-2,3,5-Tri-O-benzoyl-ß-D-Ribofuranosides. Helv. Chim. Acta 42: 1171–1173.

    Article  CAS  Google Scholar 

  30. Ti, E.F., Gaffney, B.L. and Jones, R.A. 1982. Transient protection: Efficient one-flask syntheses of protected deoxynucleosides. J. Am. Chem. Soc. 104: 1316–1319.

    Article  CAS  Google Scholar 

  31. Flockerzi, D., Silber, G., Charubala, R., Schlosser, W., Varma, R.S., Creegan, F. et al. 1981. Nucleoside, XXXVII. Synthese und Eigenschaften von 2′-O- und 3′-O-(tert-Butyldmethylsilyl)-5′-O-(4-methoxytrityl)- sowie 2′,3′-Bis-O-(tert-butyldimethylsilyl)ribonucleosiden-Ausgangssubstanzen fur Oligoribo-nucleotid-Synthesen. Liebigs Ann. Chem. 1568–1585.

    Article  Google Scholar 

  32. Usman, N., Ogilvie, K.K., Jiang, M.-Y. and Cedergren, R.J. 1987. Automated chemical synthesis of long oligoribonucleotides using 2′-O-silylated ribonucleo-side 3′-O-phosphoramidites on a controlled-pore glass support: Synthesis of a 43-nucleotide sequence similar to the 3′-half of an Escherichia coli formylmethionine tRNA. J. Am. Chem. Soc. 109: 7845–7854.

    Article  CAS  Google Scholar 

  33. Milecki, J., Dembek, P., Antkowiak, W.Z., Gdaniec, Z., Mielewczyk, S. and Adamiak, R.W. 1989. On the application of t-butyldimethylsilyl group in chemical RNA synthesis. Part I. 31P NMR study of 2′-O-t-BDMSi group migration during nucleoside 3′-OH phosphorylation and phosphitylation reactions. Nucleosides Nucleotides 8: 463–474.

    Article  CAS  Google Scholar 

  34. Zuker, M. 1989. Computer prediction of RNA structure. Methods Enzymol. 180: 262–288.

    Article  CAS  Google Scholar 

  35. Knapp, G. 1989. Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 180: 192–212.

    Article  CAS  Google Scholar 

  36. Wrede, P., Pongs, O. and Erdmann, V.A. 1978. Binding oligonucleotides to Escherichia coli and Bacillus stearothermophilus 5S RNA. J. Mol. Biol. 120: 83–96.

    Article  CAS  Google Scholar 

  37. Connors, K.A. 1987. Binding constants. John Wiley & Sons, New York.

    Google Scholar 

  38. Lin, S.-Y. and Riggs, A.D. 1972. lac represser binding to non-operator DNA: detailed studies and a comparison of equilibrium and rate competition methods. J. Mol. Biol. 72: 671–690.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolte, A., Klußmann, S., Bald, R. et al. Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat Biotechnol 14, 1116–1119 (1996). https://doi.org/10.1038/nbt0996-1116

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0996-1116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing