Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Methane dynamics regulated by microbial community response to permafrost thaw

Abstract

Permafrost contains about 50% of the global soil carbon1. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions2,3. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown3 and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ13C signature (10–15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden4,5 as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus ‘Methanoflorens stordalenmirensis6 is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models3,7. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increases in the magnitude and δ13C signature of CH4 during permafrost thaw track shifts in methanogen communities.
Figure 2: Correlation between αC and both Candidatus ‘Methanoflorens stordalenmirensis’ and the anaerobic CH4:CO2 production ratio.
Figure 3: Simulated effect of CH4 from different methanogen communities in thawing permafrost on atmospheric δ13C-CH4 in a box model of the atmosphere.

Accession codes

Primary accessions

Sequence Read Archive

Data deposits

Amplicon sequencing data are deposited in the NCBI Sequence Read Archive with accession number SRP042265.

References

  1. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009)

    Article  ADS  CAS  Google Scholar 

  2. Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374 (2013)

    Article  ADS  CAS  Google Scholar 

  3. Ciais, P. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013)

  4. Johansson, T. et al. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob. Change Biol. 12, 2352–2369 (2006)

    Article  ADS  Google Scholar 

  5. Christensen, T. R. et al. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Mondav, R. et al. Discovery of a novel methanogen in thawing permafrost. Nature Commun. 5, 3212, http://dx.doi.org/10.1038/ncomms4212 (14 February 2014)

    Article  ADS  CAS  Google Scholar 

  7. Melton, J. R. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013)

    Article  ADS  Google Scholar 

  8. Jorgenson, M. T., Racine, C. H., Walters, J. C. & Osterkamp, T. E. Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim. Change 48, 551–579 (2001)

    Article  CAS  Google Scholar 

  9. Hodgkins, S. B. et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc. Natl Acad. Sci. USA 111, 5819–5824 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2012)

    Article  ADS  Google Scholar 

  11. Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M. & Chanton, J. P. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Glob. Change Biol. 18, 515–527 (2012)

    Article  ADS  Google Scholar 

  12. Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Riley, W. J. et al. Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8, 1925–1953 (2011)

    Article  ADS  CAS  Google Scholar 

  14. Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Turetsky, M. R., Wieder, R. K. & Vitt, D. H. Boreal peatland C fluxes under varying permafrost regimes. Soil Biol. Biochem. 34, 907–912 (2002)

    Article  CAS  Google Scholar 

  16. Bäckstrand, K. et al. Annual carbon gas budget for a subarctic peatland, northern Sweden. Biogeosciences 7, 95–108 (2010)

    Article  ADS  Google Scholar 

  17. Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K. & Zhuang, Q. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19, 1325–1346 (2013)

    Article  ADS  Google Scholar 

  18. Hornibrook, E. R. C. & Bowes, H. L. Trophic status impacts both the magnitude and stable carbon isotope composition of methane flux from peatlands. Geophys. Res. Lett. 34, 2–6 (2007)

    Article  CAS  Google Scholar 

  19. Chanton, J. P., Chaser, L. C., Glaser, P. & Siegel, D. in Stable Isotopes and Biosphere–Atmosphere Interactions (eds Flanagan, L. B., Ehleringer, J. R. & Pataki, D. E. ) 85–105 (Elsevier, 2005)

    Book  Google Scholar 

  20. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Popp, T. J., Chanton, J. P., Whiting, G. J. & Grant, N. Methane stable isotope distribution at a Carex dominated fen in North Central Alberta. Glob. Biogeochem. Cycles 13, 1063–1077 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Whiticar, M. J., Faber, E. & Schoel, M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim. Cosmochim. Acta 50, 693–709 (1986)

    Article  ADS  CAS  Google Scholar 

  23. Ferry, J. G. How to make a living by exhaling methane. Annu. Rev. Microbiol. 64, 453–473 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Y. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY Acad. Sci. 1125, 171–189 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Hornibrook, E. R. C., Longstaffe, F. J. & Fyfe, W. S. Spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen isotope evidence. Geochim. Cosmochim. Acta 61, 745–753 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Wania, R. et al. Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geoscient. Model Devel. 6, 617–641 (2013)

    Article  ADS  Google Scholar 

  27. Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nature Clim. Change 3, 909–912 (2013)

    Article  ADS  CAS  Google Scholar 

  28. Kai, F. M., Tyler, S. C., Randerson, J. T. & Blake, D. R. Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature 476, 194–197 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Bousquet, P. et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443, 439–443 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Hines, M. E., Duddleston, K. N., Rooney-Varga, J. N., Fields, D. & Chanton, J. P. Uncoupling of acetate degradation from methane formation in Alaskan wetlands: connections to vegetation distribution. Glob. Biogeochem. Cycles 22, 1–12 (2008)

    Article  CAS  Google Scholar 

  31. Payette, S. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, 1–4 (2004)

    Article  Google Scholar 

  32. O’Donnell, J. a. et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15, 213–229 (2012)

    Article  CAS  Google Scholar 

  33. Vitt, D. H., Halsey, L. A. & Zoltai, S. C. The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Can. J. For. Res. 30, 283–287 (2000)

    Article  Google Scholar 

  34. Quinton, W. L., Hayashi, M. & Chasmer, L. E. Permafrost-thaw-induced land-cover change in the Canadian subarctic: implications for water resources. Hydrol. Processes 25, 152–158 (2011)

    Article  ADS  Google Scholar 

  35. Zoltai, S. C. Cyclic development of permafrost in the peatlands of Northwestern Alberta, Canada. Arct. Alp. Res. 25, 240–246 (1993)

    Article  Google Scholar 

  36. Camill, P. & Clark, J. S. Climate change disequilibrium of boreal permafrost peatlands caused by local processes. Am. Nat. 151, 207–222 (1998)

    Article  CAS  PubMed  Google Scholar 

  37. Dyke, L. D. & Sladen, W. E. Permafrost and peatland evolution in the Northern Hudson Bay Lowland, Manitoba. Arctic 63, 429–441 (2010)

    Article  Google Scholar 

  38. Whiticar, M. J. & Faber, E. Methane oxidation in sediment and water column environments—isotopic evidence. Org. Geochem. 10, 759–768 (1986)

    Article  CAS  Google Scholar 

  39. Conrad, R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org. Geochem. 36, 739–752 (2005)

    Article  CAS  Google Scholar 

  40. Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R. & Bastviken, D. Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden. Tellus B Chem. Phys. Meterol. 60, 226–237 (2008)

    Article  ADS  CAS  Google Scholar 

  41. Bubier, J. L., Crill, P. M., Mosedale, A., Frolking, S. & Linder, E. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Glob. Biogeochem. Cycles 17, 1066, http://dx.doi.org/10.1029/2002GB001946 (2003)

    Article  ADS  CAS  Google Scholar 

  42. Santoni, G. W. et al. Mass fluxes and isofluxes of methane (CH4) at a New Hampshire fen measured by a continuous wave quantum cascade laser spectrometer. J. Geophys. Res. 117, D10301 (2012)

    ADS  Google Scholar 

  43. Werle, P., Mücke, R. & Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B 139, 131–139 (1993)

    Article  ADS  Google Scholar 

  44. Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R. & Bastviken, D. Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden. J. Geophys. Res. 113, G03026, http://dx.doi.org/10.1029/2008JG000703 (2008)

    ADS  Google Scholar 

  45. Pataki, D. E. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Glob. Biogeochem. Cycles 17, 1022, http://dx.doi.org/10.1029/2001GB001850 (2003)

    Article  ADS  CAS  Google Scholar 

  46. Keeling, C. D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim. Cosmochim. Acta 13, 322–334 (1958)

    Article  ADS  CAS  Google Scholar 

  47. Keeling, C. D. The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta 24, 277–298 (1960)

    Article  ADS  Google Scholar 

  48. R Development Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012)

  49. Corbett, J. E. et al. Partitioning pathways of CO2 production in peatlands with stable carbon isotopes. Biogeochemistry 114, 327–340 (2013)

    Article  CAS  Google Scholar 

  50. Chanton, J. P., Fields, D. & Hines, M. E. Controls on the hydrogen isotopic composition of biogenic methane from high-latitude terrestrial wetlands. J. Geophys. Res. 111, 1–9 (2006)

    Google Scholar 

  51. Bragg, L., Stone, G., Imelfort, M., Hugenholtz, P. & Tyson, G. W. Fast, accurate error-correction of amplicon pyrosequences. Nature Methods 9, 425–426 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of proteins or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006)

    Article  CAS  PubMed  Google Scholar 

  53. Altschul, H. J. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009)

    Article  CAS  PubMed  Google Scholar 

  57. Tans, P. P. A note on isotopic ratios and the global atmospheric methane budget. Glob. Biogeochem. Cycles 11, 77–81 (1997)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Abisko Scientific Research Station for infrastructure and logistical support; T. Logan and N. Rakos for their assistance in the field; and S. Wofsy and S. Frolking for feedback on a draft of this paper. This work was supported by the US Department of Energy Office of Biological and Environmental Research (award DE-SC0004632), and by the University of Arizona Technology and Research Initiative Fund, through the Water, Environmental and Energy Solutions Initiative. R.M. was supported by an Australian Postgraduate Award Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

S.R.S., V.I.R., P.M.C., J.C. and G.W.T. designed the study. C.K.M., S.B.H., R.A.W., P.M.C., J.C. and S.R.S. designed and/or performed flux/porewater/isotope measurements and laboratory incubations. C.K.M., B.J.W., R.M., E.-H.K., S.R.S., V.I.R. and G.W.T. designed and/or performed analyses integrating bioinformatics and biogeochemistry. C.K.M., V.I.R. and S.R.S. wrote the paper in consultation with B.J.W., S.B.H., J.C., P.M.C., E.-H.K., R.M. and G.W.T.

Corresponding authors

Correspondence to Carmody K. McCalley or Scott R. Saleska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Expected and observed relationships between the δD and δ13C content of porewater CH4.

The thick grey arrow shows the expected pattern in H and C isotopes of CH4 when variations are caused by shifts between acetoclastic (lower right) and hydrogenotrophic (upper left) production. The thin black arrows pointing to the upper right indicate the expected pattern in H and C isotopes of CH4 when variations are caused by changes in CH4 oxidation19. The points are observed isotopic compositions of samples collected between July and October 2011 at the partly thawed Sphagnum and fully thawed Eriophorum sites; site averages are shown with error bars (error bars represent s.e.m.; n = 13 (Sphagnum) and 20 (Eriophorum)). Although the scatter allows for some variation in both production and oxidation, the average Eriophorum porewater CH4 had significantly more 13C and less D relative to Sphagnum porewater (Hotelling’s T2 test, P = 0.0001, n = 33), indicating that the overall inter-site isotopic differences were due mostly to differences in the CH4 production pathway rather than to differences in CH4 oxidation. Additionally, in August there was a significant negative relationship between δ13C-CH4 and δD-CH4 of porewater samples collected across sites (dashed line, linear regression, R2 = 0.5, P < 0.02, n = 12). Note that on the vertical axis δD-H2O has been subtracted from δD-CH4 to correct for the effect of δD exchange between H2O and CH4 (refs 203850).

Source data

Extended Data Figure 2 Simulations, using high and low temperature and C release scenarios, of the effect of CH4 release from thawing permafrost on atmospheric δ13C-CH4.

a, Scenarios of permafrost C release due to thaw (red bounding lines, high temperature; orange bounding lines, low temperature; the range in each case is defined by high and low C release scenarios). b, Impact on atmospheric methane mixing ratios (assuming that 2.3% of released C is emitted as methane). c, Impact of the high climate change scenario on atmospheric methane isotopes, assuming Eriophorum-like emissions (blue bounding lines, δ13C ≈ −65‰), or assuming Sphagnum-like emissions (green bounding lines, δ13C ≈ −80‰). d, As in c, except for the low climate change scenario. In c and d, dotted horizontal lines indicate the detection limit for CH4 isotopes28.

Extended Data Table 1 Summary of porewater chemistry, average (s.e.m.), n = 3
Extended Data Table 2 Relative abundance, taxonomic classification and predicted methanogenic pathway of the dominant methanogen operational taxonomic units (OTUs)
Extended Data Table 3 Relative abundance of methanogen functional groups within the Archaea
Extended Data Table 4 Results of linear regression analysis for predicting αC from the relative abundances of methanogenic pathways, dominant methanogenic lineages and environmental variables (n = 41)
Extended Data Table 5 Results of stepwise multiple regression analysis for predicting αC from relative abundances of methanogenic lineages and environmental variables
Extended Data Table 6 Estimate of the relative contribution of hydrogenotrophic production to annual CH4 emission at Stordalen mire
Extended Data Table 7 Small-subunit rRNA gene amplicon multiplex identifiers (MIDs) used for each sample
Extended Data Table 8 Results of stepwise multiple regression analysis for predicting δ13C-CH4 from relative abundances of methanogenic lineages and environmental variables (model 1), the relative abundance of ‘M. stordalenmirensis’ from environmental variables (model 2), and αC from environmental variables (model 3)

Supplementary information

Supplementary Data

Operational taxonomic unit (OTU) table from 16S rRNA gene amplicon analysis. Each row represents an OTU. The first set of columns show the number of that 16S rRNA gene amplicon found in each sample. The rightmost columns show the taxonomy of that OTU predicted with BLAST. The samples presented in this study represent a subset of a larger sampling campaign (eg. Mondav et al 2014) therefore not all OTU's identified in the larger sample-set are present in this table. (XLS 9134 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCalley, C., Woodcroft, B., Hodgkins, S. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014). https://doi.org/10.1038/nature13798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13798

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing