Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleotide signalling during inflammation

This article has been updated

Abstract

Inflammatory conditions are associated with the extracellular release of nucleotides, particularly ATP. In the extracellular compartment, ATP predominantly functions as a signalling molecule through the activation of purinergic P2 receptors. Metabotropic P2Y receptors are G-protein-coupled, whereas ionotropic P2X receptors are ATP-gated ion channels. Here we discuss how signalling events through P2 receptors alter the outcomes of inflammatory or infectious diseases. Recent studies implicate a role for P2X/P2Y signalling in mounting appropriate inflammatory responses critical for host defence against invading pathogens or tumours. Conversely, P2X/P2Y signalling can promote chronic inflammation during ischaemia and reperfusion injury, inflammatory bowel disease or acute and chronic diseases of the lungs. Although nucleotide signalling has been used clinically in patients before, research indicates an expanding field of opportunities for specifically targeting individual P2 receptors for the treatment of inflammatory or infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extracellular nucleotide release and signalling during inflammation.
Figure 2: P2Y2R signalling during injury resolution and chronic inflammation.
Figure 3: P2X7R signalling during infection and inflammation.

Similar content being viewed by others

Change history

  • 14 May 2014

    An incorrect URL was shown for http://www.clinicaltrials.gov/ in the print version of this Review, and has been corrected in the online version.

References

  1. Khakh, B. S. & Burnstock, G. The double life of ATP. Sci. Am. 301, 84–92 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Junger, W. G. Immune cell regulation by autocrine purinergic signalling. Nature Rev. Immunol. 11, 201–212 (2011)Provides a comprehensive overview of the functional roles of purinergic signalling events on cells of the adaptive and innate immune systems.

    Article  CAS  Google Scholar 

  3. Fredholm, B. & Verkhratsky, A. Purines — 80 years and very much alive. Acta Physiol. 199, 91–92 (2010)

    Article  CAS  Google Scholar 

  4. Burnstock, G. Purinergic signalling and disorders of the central nervous system. Nature Rev. Drug. Discov. 7, 575–590 (2008)

    Article  CAS  Google Scholar 

  5. Eltzschig, H. K., Sitkovsky, M. V. & Robson, S. C. Purinergic signaling during inflammation. N. Engl. J. Med. 367, 2322–2333 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eltzschig, H. K., Macmanus, C. F. & Colgan, S. P. Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends Cardiovasc. Med. 18, 103–107 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eltzschig, H. K. et al. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ. Res. 99, 1100–1108 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Chekeni, F. B. et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010)Identifies a functional role for pannexin-mediated ATP release from cells undergoing apoptosis as a ‘find-me’ signal for phagocytes.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Faigle, M., Seessle, J., Zug, S., El Kasmi, K. C. & Eltzschig, H. K. ATP release from vascular endothelia occurs across Cx43 hemichannels and is attenuated during hypoxia. PLoS ONE 3, e2801 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lazarowski, E. R. Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal. 8, 359–373 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abbracchio, M. P. et al. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev. 58, 281–341 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. Jacobson, K. A., Balasubramanian, R., Deflorian, F. & Gao, Z. G. G protein-coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions. Purinergic Signal. 8, 419–436 (2012)Provides an update on the medicinal chemistry and pharmacology of the different subtypes of adenosine receptors and P2Y receptors, including recent advances in the identification and characterization of selective ligands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soulet, C. et al. Gi-dependent and -independent mechanisms downstream of the P2Y12 ADP-receptor. J. Thromb. Haemost. 2, 135–146 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Hardy, A. R. et al. P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105, 3552–3560 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. von Kugelgen, I. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol. Ther. 110, 415–432 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Harden, T. K., Sesma, J. I., Fricks, I. P. & Lazarowski, E. R. Signalling and pharmacological properties of the P2Y receptor. Acta Physiol. 199, 149–160 (2010)

    Article  CAS  Google Scholar 

  17. Hawking, F. Suramin: with special reference to onchocerciasis. Adv. Pharmacol. Chemother. 15, 289–322 (1978)

    Article  CAS  PubMed  Google Scholar 

  18. Voogd, T. E., Vansterkenburg, E. L., Wilting, J. & Janssen, L. H. Recent research on the biological activity of suramin. Pharmacol. Rev. 45, 177–203 (1993)

    CAS  PubMed  Google Scholar 

  19. Ratjen, F. et al. Long term effects of denufosol tetrasodium in patients with cystic fibrosis. J. Cyst. Fibros. 11, 539–549 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. Rieg, T. et al. Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J. 21, 3717–3726 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Horckmans, M. et al. Gene deletion of P2Y4 receptor lowers exercise capacity and reduces myocardial hypertrophy with swimming exercise. Am. J. Physiol. Heart. Circ. Physiol. 303, H835–H843 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. Knowles, M. R., Clarke, L. L. & Boucher, R. C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N. Engl. J. Med. 325, 533–538 (1991)

    Article  CAS  PubMed  Google Scholar 

  23. Parr, C. E. et al. Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc. Natl Acad. Sci. USA 91, 3275–3279 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davis, S. D. & Ferkol, T. Identifying the origins of cystic fibrosis lung disease. N. Engl. J. Med. 368, 2026–2028 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. Burnstock, G., Brouns, I., Adriaensen, D. & Timmermans, J. P. Purinergic signaling in the airways. Pharmacol. Rev. 64, 834–868 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. Kellerman, D. et al. Denufosol: a review of studies with inhaled P2Y2 agonists that led to Phase 3. Pulm. Pharmacol. Ther. 21, 600–607 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Deterding, R. R. et al. Phase 2 randomized safety and efficacy trial of nebulized denufosol tetrasodium in cystic fibrosis. Am. J. Respir. Crit. Care Med. 176, 362–369 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. Gendaszewska-Darmach, E. & Kucharska, M. Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing. Purinergic Signal. 7, 193–206 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Y. et al. Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci. Signal 3, ra45 (2010)

    PubMed  PubMed Central  Google Scholar 

  31. Chen, Y. et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314, 1792–1795 (2006)Shows that human neutrophils release ATP from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y 2 R as a mechanism of purinergic chemotaxis.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Myrtek, D. & Idzko, M. Chemotactic activity of extracellular nucleotideson human immune cells. Purinergic Signal. 3, 5–11 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferrari, D. et al. Activation of human eosinophils via P2 receptors: novel findings and future perspectives. J. Leukoc. Biol. 79, 7–15 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Kronlage, M. et al. Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci. Signal 3, ra55 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. Ben Yebdri, F., Kukulski, F., Tremblay, A. & Sevigny, J. Concomitant activation of P2Y2 and P2Y6 receptors on monocytes is required for TLR1/2-induced neutrophil migration by regulating IL-8 secretion. Eur. J. Immunol. 39, 2885–2894 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kobayashi, T., Kouzaki, H. & Kita, H. Human eosinophils recognize endogenous danger signal crystalline uric acid and produce proinflammatory cytokines mediated by autocrine ATP. J. Immunol. 184, 6350–6358 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. Geary, C. et al. Increased susceptibility of purinergic receptor-deficient mice to lung infection with Pseudomonas aeruginosa. Am. J. Physiol. Lung Cell Mol. Physiol. 289, L890–L895 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. Inoue, Y., Chen, Y., Hirsh, M. I., Yip, L. & Junger, W. G. A3 and P2Y2 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis. Shock 30, 173–177 (2008)

    PubMed  PubMed Central  Google Scholar 

  39. Ayata, C. K. et al. Purinergic P2Y2 receptors promote neutrophil infiltration and hepatocyte death in mice with acute liver injury. Gastroenterology 143, 1620–1629 (2012)

    Article  CAS  PubMed  Google Scholar 

  40. Lommatzsch, M. et al. Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 181, 928–934 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Cicko, S. et al. Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema. J. Immunol. 185, 688–697 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. Idzko, M. et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nature Med. 13, 913–919 (2007)Shows that allergen challenge causes acute accumulation of ATP in the airways of asthmatic subjects or in mice with experimentally induced asthma, and further implicates purinergic signalling as a key mediator in allergen-driven lung inflammation.

    Article  CAS  PubMed  Google Scholar 

  43. Muller, T. et al. The purinergic receptor P2Y2 receptor mediates chemotaxis of dendritic cells and eosinophils in allergic lung inflammation. Allergy 65, 1545–1553 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. Weber, F. C. et al. Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity. J. Exp. Med. 207, 2609–2619 (2010)Identifies P2X 7 R as a crucial receptor for extracellular ATP released in skin in response to contact allergens, and triggering of contact hypersensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Idzko, M. et al. Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. Br. J. Pharmacol. 138, 1244–1250 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kouzaki, H., Iijima, K., Kobayashi, T., O’Grady, S. M. & Kita, H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J. Immunol. 186, 4375–4387 (2011)

    Article  CAS  PubMed  Google Scholar 

  47. Kunzli, B. M. et al. Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G223–G230 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. Vieira, R. P. et al. Purinergic receptor type 6 contributes to airway inflammation and remodeling in experimental allergic airway inflammation. Am. J. Respir. Crit. Care Med. 184, 215–223 (2011)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  49. Grbic, D. M., Degagne, E., Langlois, C., Dupuis, A. A. & Gendron, F. P. Intestinal inflammation increases the expression of the P2Y6 receptor on epithelial cells and the release of CXC chemokine ligand 8 by UDP. J. Immunol. 180, 2659–2668 (2008)

    Article  CAS  PubMed  Google Scholar 

  50. Riegel, A. K. et al. Selective induction of endothelial P2Y6 nucleotide receptor promotes vascular inflammation. Blood 117, 2548–2555 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Z. et al. P2Y6 agonist uridine 5′-diphosphate promotes host defense against bacterial infection via monocyte chemoattractant protein-1-mediated monocytes/macrophages recruitment. J. Immunol. 186, 5376–5387 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. Idzko, M. et al. Characterization of the biological activities of uridine diphosphate in human dendritic cells: influence on chemotaxis and CXCL8 release. J. Cell. Physiol. 201, 286–293 (2004)

    Article  CAS  PubMed  Google Scholar 

  53. Ferrari, D. et al. P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Lett. 486, 217–224 (2000)

    Article  CAS  PubMed  Google Scholar 

  54. Koizumi, S. et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446, 1091–1095 (2007)Demonstrates that P2Y 6 R is upregulated when neurons are damaged, and implicates its signalling function as a sensor for phagocytosis by sensing diffusible UDP signals, a novel pathway mediating microglial phagocytosis.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grbic, D. M. et al. P2Y6 receptor contributes to neutrophil recruitment to inflamed intestinal mucosa by increasing CXC chemokine ligand 8 expression in an AP-1-dependent manner in epithelial cells. Inflamm. Bowel Dis. 18, 1456–1469 (2012)

    Article  PubMed  Google Scholar 

  56. Guns, P. J., Hendrickx, J., Van Assche, T., Fransen, P. & Bult, H. P2Y receptors and atherosclerosis in apolipoprotein E-deficient mice. Br. J. Pharmacol. 159, 326–336 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. Semple, J. W., Italiano, J. E., Jr. & Freedman, J. Platelets and the immune continuum. Nature Rev. Immunol. 11, 264–274 (2011)

    Article  CAS  Google Scholar 

  58. Muhlestein, J. B. Effect of antiplatelet therapy on inflammatory markers in atherothrombotic patients. Thromb. Haemost. 103, 71–82 (2010)

    Article  CAS  PubMed  Google Scholar 

  59. Li, D. et al. Roles of purinergic receptor P2Y, G protein-coupled 12 in the development of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32, e81–e89 (2012)

    CAS  PubMed  Google Scholar 

  60. Yashiro, K. et al. Involvement of platelet activation by P2Y12 receptor in the development of transplant arteriosclerosis in mice. Transplantation 87, 660–667 (2009)

    Article  CAS  PubMed  Google Scholar 

  61. Paruchuri, S. et al. Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J. Exp. Med. 206, 2543–2555 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Neves, J. S., Radke, A. L. & Weller, P. F. Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. J. Allergy Clin. Immunol. 125, 477–482 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ben Addi, A., Cammarata, D., Conley, P. B., Boeynaems, J. M. & Robaye, B. Role of the P2Y12 receptor in the modulation of murine dendritic cell function by ADP. J. Immunol. 185, 5900–5906 (2010)

    Article  CAS  PubMed  Google Scholar 

  64. Bunyavanich, S., Boyce, J. A., Raby, B. A. & Weiss, S. T. Gene-by-environment effect of house dust mite on purinergic receptor P2Y12 (P2RY12) and lung function in children with asthma. Clin. Exp. Allergy 42, 229–237 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Surprenant, A. & North, R. A. Signaling at purinergic P2X receptors. Annu. Rev. Physiol. 71, 333–359 (2009)

    Article  CAS  PubMed  Google Scholar 

  66. Khakh, B. S. & North, R. A. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron 76, 51–69 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khakh, B. S. & North, R. A. P2X receptors as cell-surface ATP sensors in health and disease. Nature 442, 527–532 (2006)Describes P2X signalling beyond its function in the autonomic nervous system, with particular focus on its key roles in afferent signalling, chronic pain and autocrine loops of endothelial and epithelial cells.

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Kawate, T., Michel, J. C., Birdsong, W. T. & Gouaux, E. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460, 592–598 (2009)Presents the crystal structure of zebrafish P2X 4 R in its closed, resting state, including definition of the locations of three non-canonical, intersubunit ATP-binding sites, and evidence suggesting that ATP binding promotes subunit rearrangement and ion channel opening.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Alberto, A. V. et al. Is pannexin the pore associated with the P2X7 receptor? Naunyn Schmiedebergs Arch. Pharmacol. 386, 775–787 (2013)

    Article  CAS  PubMed  Google Scholar 

  70. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Schwarz, N. et al. Alternative splicing of the N-terminal cytosolic and transmembrane domains of P2X7 controls gating of the ion channel by ADP-ribosylation. PLoS One 7, e41269 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. North, R. A. & Jarvis, M. F. P2X receptors as drug targets. Mol. Pharmacol. 83, 759–769 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mulryan, K. et al. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403, 86–89 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Yan, D. et al. Mutation of the ATP-gated P2X2 receptor leads to progressive hearing loss and increased susceptibility to noise. Proc. Natl Acad. Sci. USA 110, 2228–2233 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  75. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Coutinho-Silva, R., Knight, G. E. & Burnstock, G. Impairment of the splenic immune system in P2X2/P2X3 knockout mice. Immunobiology 209, 661–668 (2005)

    Article  CAS  PubMed  Google Scholar 

  77. Falzoni, S. et al. The purinergic P2Z receptor of human macrophage cells. Characterization and possible physiological role. J. Clin. Invest. 95, 1207–1216 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coutinho-Silva, R. & Ojcius, D. M. Role of extracellular nucleotides in the immune response against intracellular bacteria and protozoan parasites. Microbes Infect. 14, 1271–1277 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stagg, J. & Smyth, M. J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29, 5346–5358 (2010)

    Article  CAS  PubMed  Google Scholar 

  80. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med. 15, 1170–1178 (2009)

    Article  CAS  PubMed  Google Scholar 

  81. Muller, T. et al. A potential role for P2X7R in allergic airway inflammation in mice and humans. Am. J. Respir. Cell Mol. Biol. 44, 456–464 (2011)

    Article  CAS  PubMed  Google Scholar 

  82. Wilhelm, K. et al. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nature Med. 16, 1434–1438 (2010)Reveals the relevance of ATP-induced activation of P2X 7 R for graft-versus-host disease development, indicating that the physiological metabolite ATP must be recognized as an endogenous danger signal that has detrimental effects when released into the extracellular space after tissue damage through the activation of recipient antigen-presenting cells.

    Article  CAS  PubMed  Google Scholar 

  83. Killeen, M. E., Ferris, L., Kupetsky, E. A., Falo, L., Jr. & Mathers, A. R. Signaling through purinergic receptors for ATP induces human cutaneous innate and adaptive Th17 responses: implications in the pathogenesis of psoriasis. J. Immunol. 190, 4324–4336 (2013)

    Article  CAS  PubMed  Google Scholar 

  84. Manthei, D. M. et al. Protection from asthma in a high-risk birth cohort by attenuated P2X7 function. J. Allergy Clin. Immunol. 130, 496–502 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Gulbransen, B. D. et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nature Med. 18, 600–604 (2012)Provides evidence that activation of neuronal P2X 7 R through pannexin 1 underlies neuron death and the subsequent development of abnormal gut motility in IBD, suggesting that this pathway could be targeted to ameliorate the progression of gut dysmotility during intestinal inflammation.

    Article  CAS  PubMed  Google Scholar 

  87. Kurashima, Y. et al. Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nature Commun. 3, 1034 (2012)

    Article  ADS  CAS  Google Scholar 

  88. Lucattelli, M. et al. P2X7 receptor signalling in the pathogenesis of smoke-induced lung inflammation and emphysema. Am. J. Respir. Cell Mol. Biol. 44, 423–429 (2010)

    Article  CAS  PubMed  Google Scholar 

  89. Zimmermann, H., Zebisch, M. & Strater, N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 8, 437–502 (2012)Summarizes what is known about the cellular and molecular functions of ATP-hydrolysing ectonucleotidases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kohler, D. et al. CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation 116, 1784–1794 (2007)

    Article  CAS  PubMed  Google Scholar 

  91. Pinsky, D. J. et al. Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain. J. Clin. Invest. 109, 1031–1040 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Flogel, U. et al. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci. Transl. Med. 4, 146ra108 (2012)Here the authors developed a selective ADORA2A agonist that requires the presence of CD73 to become activated. This compound suppresses joint inflammation in experimental rheumatoid arthritis, while avoiding ADORA2A-mediated vasodilation.

    Article  CAS  PubMed  Google Scholar 

  93. Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001)First study to provide genetic evidence for a non-redundant role for the P1 adenosine receptor ADORA2A in the physiological negative feedback mechanism for limitation and termination of both tissue-specific and systemic inflammatory responses.

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Sitkovsky, M. V. et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 22, 657–682 (2004)

    Article  CAS  PubMed  Google Scholar 

  95. Colgan, S. P. & Eltzschig, H. K. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu. Rev. Physiol. 74, 153–175 (2012)

    Article  CAS  PubMed  Google Scholar 

  96. Friedman, D. J. et al. CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc. Natl Acad. Sci. USA 106, 16788–16793 (2009)Provides evidence that CD39 deficiency exacerbates murine colitis and suggests that CD39 polymorphisms are associated with IBD in humans.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  97. Eckle, T. et al. Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J. Immunol. 178, 8127–8137 (2007)

    Article  CAS  PubMed  Google Scholar 

  98. Chevalier, M. F. & Weiss, L. The split personality of regulatory T cells in HIV infection. Blood 121, 29–37 (2013)

    Article  CAS  PubMed  Google Scholar 

  99. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007)Identifies CD39 and CD73 as surface markers of T regs and implicates extracellular adenosine generation in an autocrine signalling loop critical for the suppressor functions of T regs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ehrentraut, H. et al. CD73+ regulatory T cells contribute to adenosine-mediated resolution of acute lung injury. FASEB J. 27, 2207–2219 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nikolova, M. et al. CD39/adenosine pathway is involved in AIDS progression. PLoS Pathog. 7, e1002110 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Beldi, G. et al. Natural killer T cell dysfunction in CD39-null mice protects against concanavalin A-induced hepatitis. Hepatology 48, 841–852 (2008)

    Article  CAS  PubMed  Google Scholar 

  103. Sansom, F. M. et al. A bacterial ecto-triphosphate diphosphohydrolase similar to human CD39 is essential for intracellular multiplication of Legionella pneumophila. Cell Microbiol. 9, 1922–1935 (2007)

    Article  CAS  PubMed  Google Scholar 

  104. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion–from mechanism to translation. Nature Med. 17, 1391–1401 (2011)

    Article  CAS  PubMed  Google Scholar 

  105. Eltzschig, H. K. et al. Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26. Blood 108, 1602–1610 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morote-Garcia, J. C., Rosenberger, P., Kuhlicke, J. & Eltzschig, H. K. HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111, 5571–5580 (2008)

    Article  CAS  PubMed  Google Scholar 

  107. Schingnitz, U. et al. Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. J. Immunol. 184, 5271–5279 (2010)

    Article  CAS  PubMed  Google Scholar 

  108. Eltzschig, H. K., Bonney, S. K. & Eckle, T. Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends Mol. Med. 19, 345–354 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Eckle, T. et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nature Med. 18, 774–782 (2012)

    Article  CAS  PubMed  Google Scholar 

  110. Eckle, T. et al. Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. FASEB J. 27, 3078–3089 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Morote-Garcia, J. C., Rosenberger, P., Nivillac, N. M., Coe, I. R. & Eltzschig, H. K. Hypoxia-inducible factor-dependent repression of equilibrative nucleoside transporter 2 attenuates mucosal inflammation during intestinal hypoxia. Gastroenterology 136, 607–618 (2009)

    Article  CAS  PubMed  Google Scholar 

  112. Frick, J. S. et al. Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. J. Immunol. 182, 4957–4964 (2009)

    Article  CAS  PubMed  Google Scholar 

  113. Csoka, B. et al. A2B adenosine receptors protect against sepsis-induced mortality by dampening excessive inflammation. J. Immunol. 185, 542–550 (2010)

    Article  CAS  PubMed  Google Scholar 

  114. Belikoff, B. G. et al. A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice. J. Immunol. 186, 2444–2453 (2011)

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, K. et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature http://dx.doi.org/10.1038/nature13083 (23 March, 2014)

  116. Zhang, J. et al. Agonist-bound structure of the human P2Y12 receptor. Nature (in the press).

Download references

Acknowledgements

We acknowledge S. A. Eltzschig for help with artwork during manuscript preparation. The present research is supported by Deutsche Forschungsgemeinschaft grant ID7/3-1 ID7/4-1 and a grant by the Boehringer-Ingelheim Foundation to I.D., as well as National Institutes of Health grants R01-DK097075, R01-HL0921, R01-DK083385, R01-HL098294, POIHL114457-01 and a grant by the Crohn’s and Colitis Foundation of America to H.K.E.

Author information

Authors and Affiliations

Authors

Contributions

M.I., D.F. and H.K.E. all contributed to the writing of this paper.

Corresponding author

Correspondence to Marco Idzko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and Supplementary References. (PDF 519 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idzko, M., Ferrari, D. & Eltzschig, H. Nucleotide signalling during inflammation. Nature 509, 310–317 (2014). https://doi.org/10.1038/nature13085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13085

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing