Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer

Abstract

The excess of highly siderophile (iron-loving) elements (HSEs) and the chondritic ratios of most HSEs in the bulk silicate Earth (BSE) may reflect the accretion of a chondritic ‘late veneer’ of about 0.5 per cent of Earth’s mass after core formation1,2. The amount of volatiles contained in the late veneer is a key constraint on the budget and the origin of the volatiles in Earth. At high pressures and temperatures, the moderately volatile chalcogen elements sulphur (S), selenium (Se) and tellurium (Te) are moderately to highly siderophile; thus, if depleted by core formation their mantle abundances should reflect the volatile composition of the late veneer3,4. Here we report ratios and abundances of S, Se and Te in the mantle determined from new isotope dilution data for post-Archaean mantle peridotites. The mean S/Se and Se/Te ratios of mantle lherzolites overlap with CI (Ivuna-type) carbonaceous chondrite values5,6. The Se/Te ratios of ordinary and enstatite chondrites are significantly different. The chalcogen/HSE ratio of the BSE is similar to that of CM (Mighei-type) carbonaceous chondrites, consistent with the view that the HSE signature of the BSE reflects a predominance of slightly volatile-depleted, carbonaceous-chondrite-like material, possibly with a minor proportion of non-chondritic material7. Depending on the estimates for the abundances of water and carbon in the BSE8, the late veneer may have supplied 20 to 100 per cent of the budget of hydrogen and carbon in the BSE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation of S and Se contents of terrestrial peridotites with Al2O3 contents as indicator of depletion.
Figure 2: Correlations of Te with Se and Pd contents.
Figure 3: CI-chondrite-normalized ratios of moderately volatile chalcogens relative to the refractory highly siderophile element Ir.

Similar content being viewed by others

References

  1. Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde Geochem. 69, 101–125 (2009)

    Article  CAS  Google Scholar 

  2. Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audetat, A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures: implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim. Cosmochim. Acta 84, 593–613 (2012)

    Article  ADS  CAS  Google Scholar 

  3. Yi, W. et al. Cadmium, indium, tin, tellurium, and sulfur in oceanic basalts: Implications for chalcophile element fractionation in the Earth. J. Geophys. Res. Solid Earth 105, 18927–18948 (2000)

    Article  CAS  Google Scholar 

  4. Rose-Weston, L., Brenan, J. M., Fei, Y. W., Secco, R. A. & Frost, D. J. Effect of pressure, temperature, and oxygen fugacity on the metal-silicate partitioning of Te, Se, and S: implications for earth differentiation. Geochim. Cosmochim. Acta 73, 4598–4615 (2009)

    Article  ADS  CAS  Google Scholar 

  5. Dreibus, G., Palme, H., Spettel, B., Zipfel, J. & Wänke, H. Sulfur and selenium in chondritic meteorites. Meteoritics 30, 439–445 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Fischer-Gödde, M. & Becker, H. Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks. Geochim. Cosmochim. Acta 77, 135–156 (2012)

    Article  ADS  Google Scholar 

  8. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012)

    Article  ADS  Google Scholar 

  9. Abe, Y., Ohtani, E., Okuchi, T., Righter, K. & Drake, M. in Origin of the Earth and Moon (eds R. M. Canup & K. Righter) 413–433 (Univ. Arizona Press, 2000)

    Google Scholar 

  10. Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328, 884–887 (2010)

    Article  ADS  Google Scholar 

  12. Rubie, D. C. et al. Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011)

    Article  ADS  CAS  Google Scholar 

  13. Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009)

    Article  ADS  Google Scholar 

  14. Wood, B. J. & Halliday, A. N. The lead isotopic age of the Earth can be explained by core formation alone. Nature 465, 767–770 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Becker, H. et al. Highly siderophile element composition of the Earth's primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 70, 4528–4550 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Fischer-Gödde, M., Becker, H. & Wombacher, F. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem. Geol. 280, 365–383 (2011)

    Article  ADS  Google Scholar 

  17. Walker, R. J. et al. Comparative 187Re-187Os systematics of chondrites: implications regarding early solar system processes. Geochim. Cosmochim. Acta 66, 4187–4201 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Meisel, T., Walker, R. J., Irving, A. J. & Lorand, J. P. Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim. Cosmochim. Acta 65, 1311–1323 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Morgan, J. W. Ultramafic xenoliths: clues to Earth’s late accretionary history. J. Geophys. Res. Solid Earth 91, 12375–12387 (1986)

    Article  Google Scholar 

  20. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    Article  ADS  CAS  Google Scholar 

  21. Palme, H. & O’Neill, H. S. C. in Treatise on Geochemistry Vol. 2 (eds H. D. Holland & K. K. Turekian) 1–38 (Pergamon, 2003)

    Google Scholar 

  22. Lorand, J. P. & Alard, O. Determination of selenium and tellurium concentrations in Pyrenean peridotites (Ariege, France): new insight into S/Se/Te systematics of the upper in mantle samples. Chem. Geol. 278, 120–130 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Wang, Z., Becker, H. & Gawronski, T. Partial re-equilibration of highly siderophile elements and the chalcogens in the mantle: a case study on the Baldissero and Balmuccia peridotite massifs (Ivrea Zone, Italian Alps). Geochim. Cosmochim. Acta 108, 21–44 (2013)

    Article  ADS  CAS  Google Scholar 

  24. Bodinier, J. L. & Godard, M. in Treatise on Geochemistry Vol. 2 (eds H. D. Holland & K. K. Turekian) 103–170 (Pergamon, 2003)

    Google Scholar 

  25. Lyubetskaya, T. & Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J. Geophys. Res. Solid Earth 112, B03211 (2007)

    ADS  Google Scholar 

  26. Alexander, C. M. O. D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012)

    Article  ADS  CAS  Google Scholar 

  27. Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Jenner, F. E. & O'Neill, H. S. C. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 13, Q02005 (2012)

    ADS  Google Scholar 

  29. König, S., Luguet, A., Lorand, J.-P., Wombacher, F. & Lissner, M. Selenium and tellurium systematics of the Earth’s mantle from high precision analyses of ultra-depleted orogenic peridotites. Geochim. Cosmochim. Acta 86, 354–366 (2012)

    Article  ADS  Google Scholar 

  30. Hertogen, J., Janssens, M. J. & Palme, H. Trace elements in ocean ridge basalt glasses: implications for fractionations during mantle evolution and petrogenesis. Geochim. Cosmochim. Acta 44, 2125–2143 (1980)

    Article  ADS  CAS  Google Scholar 

  31. Fehr, M. A., Rehkämper, M. & Halliday, A. N. Application of MC-ICPMS to the precise determination of tellurium isotope compositions in chondrites, iron meteorites and sulfides. Int. J. Mass Spectrom. 232, 83–94 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Some peridotite and meteorite samples were provided by S. Gao, J.-P. Lorand, G. MacPherson and M. Wadhwa. We thank F. Wombacher and C. Funk for discussions and M. Feth, K. Hammerschmidt and M. Weynell for technical assistance. This work was supported by funds from Freie Universität Berlin and a China Scholarship Council fellowship to Z.W.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and H.B. wrote the paper. H.B. designed the project. Z.W. developed the analytical methods and performed the analyses.

Corresponding authors

Correspondence to Zaicong Wang or Harry Becker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, a Supplementary Discussion, Supplementary Figures 1-2 and Supplementary References. (PDF 416 kb)

Supplementary Tables

This file contains Supplementary Tables 1-7. (XLS 78 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013). https://doi.org/10.1038/nature12285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12285

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing