Review Article | Published:

The evolution of multiferroics

Nature Reviews Materials volume 1, Article number: 16046 (2016) | Download Citation

Abstract

Materials with a coexistence of magnetic and ferroelectric order — multiferroics — provide an efficient route for the control of magnetism by electric fields. The study of multiferroics dates back to the 1950s, but in recent years, key discoveries in theory, synthesis and characterization techniques have led to a new surge of interest in these materials. Different mechanisms, such as lone-pair, geometric, charge-ordering and spin-driven effects, can support multiferroicity. The general focus of the field is now shifting into neighbouring research areas, as we discuss in this Review. Multiferroic thin-film heterostructures, device architectures, and domain and interface effects are explored. The violation of spatial and inversion symmetry in multiferroic materials is a key feature because it determines their properties. Other aspects, such as the non-equilibrium dynamics of multiferroics, are underrated and should be included in the topics that will define the future of the field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).

  2. 2.

    , & Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58, 321–448 (2009).

  3. 3.

    , , & Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519–626 (2015).

  4. 4.

    Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000). This paper points out the incompatibility of magnetic and electric order in perovskites; it initiated a search for multiferroic materials circumventing this conflict.

  5. 5.

    , , & The coexistence of the ferroelectric and ferromagnetic states. Izv. Akad. Nauk SSSR, Ser. Fiz. 25, 1333–1339 (in russian) (1961); English translation available in Bull. Acad. Sci. USSR, Phys. Ser. (Engl. Transl.) 25, 1345–1350 (1961).

  6. 6.

    Some properties of ferromagnetoelectric nickel–iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966).

  7. 7.

    & Ferroelectromagnets. Sov. Phys. -Usp. 137, 475– 493 (1982).

  8. 8.

    The dice-stone ‘Der Wurfelstein’: some personal souvenirs around the discovery of the first ferromagnetic ferroelectric. Ferroelectrics 427, 1–33 (2012).

  9. 9.

    , , & Magnetoferroelectricity in Cr2BeO4. J. Appl. Phys. 49, 6088–6091 (1978). First report of magnetically induced ferroelectricity, which is well ahead of its time.

  10. 10.

    Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994). In this paper (and in the associated MEIPIC II conference) the term ‘multiferroics’ was coined. Many of the modern concepts of multiferroics can be traced back to this conference.

  11. 11.

    , , , & Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002). First work on multiferroic domain walls and magnetoelectric domain coupling effects in a type I multiferroic material.

  12. 12.

    et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003). Observation of giant magnetoelectric coupling effects in a type II multiferroic material.

  13. 13.

    et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

  14. 14.

    & Non-collinear magnetism in multiferroic perovskites. J. Phys. Condens. Matter 28, 123001 (2016).

  15. 15.

    & Mechanisms and origin of multiferroicity. C. R. Phys. 16, 143–152 (2015).

  16. 16.

    & Diffraction studies of multiferroics. Annu. Rev. Mater. Res. 44, 269–298 (2014).

  17. 17.

    et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003). First work on multiferroic BiFeO3 thin films.

  18. 18.

    Determination of Curie temperature for BiFeO3 ferroelectric. Dokl. Akad. Nauk SSSR 139, 1345 (in russian) (1961); English translation available in Sov. Phys. -Dokl. 6, 729 (1962).

  19. 19.

    , & Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Dokl. Akad. Nauk SSSR 145, 1255 (in russian) (1962); English translation available in Sov. Phys. -Dokl. 7, 742 (1963).

  20. 20.

    , , & The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164–170 (2004).

  21. 21.

    & Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).

  22. 22.

    et al. Ferroelectricity in the multiferroic hexagonal manganites. Nat. Phys. 11, 1070–1074 (2015).

  23. 23.

    , , , & Ferroelectric properties of hexagonal orthomanganites of yttrium and rare earths. Proc. Int. Meet. Ferroelectr. (Prague, 1966).

  24. 24.

    et al. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys. Rev. Lett. 84, 5620–5623 (2000).

  25. 25.

    et al. Room-temperature multiferroic hexagonal LuFeO3 films. Phys. Rev. Lett. 110, 237601 (2013).

  26. 26.

    , , , & Ferroelectricity in BaM2+F4. Phys. Lett. A 29, 409–410 (1969).

  27. 27.

    & Electric-field-switchable magnets: the case of BaNiF4. Phys. Rev. B 74, 020401 (2006).

  28. 28.

    & Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

  29. 29.

    et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136–1138 (2005).

  30. 30.

    & Multiferroicity due to charge ordering. J. Phys. Condens. Matter 20, 434217 (2008).

  31. 31.

    et al. Charge order in LuFe2O4: an unlikely route to ferroelectricity. Phys. Rev. Lett. 108, 187601 (2012).

  32. 32.

    et al. Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites. Proc. Natl Acad. Sci. USA 104, 13597–13602 (2007).

  33. 33.

    , & Multiferroics of spin origin. Rep. Progress Phys. 77, 076501 (2014).

  34. 34.

    & Advances in ab initio theory of multiferroics. Eur. Phys. J. B 85, 240 (2012).

  35. 35.

    Spiral magnets as magnetoelectrics. Annu. Rev. Mater. Res. 37, 387–413 (2007).

  36. 36.

    A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

  37. 37.

    , & Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005). First paper, along with reference 38, to present a theory for magnetically induced ferroelectricity.

  38. 38.

    Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).

  39. 39.

    , & Differentiation between ferroelectricity and thermally stimulated current in pyrocurrent measurements of multiferroic MMn7O12 (M = Ca, Sr, Cd, Pb). Phys. Rev. B 93, 155127 (2016).

  40. 40.

    et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).

  41. 41.

    & Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

  42. 42.

    et al. Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure. Nat. Commun. 5, 4927 (2014).

  43. 43.

    Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Japan 76, 073702 (2007).

  44. 44.

    , , , & Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide. Nat. Commun. 4, 2511 (2013).

  45. 45.

    Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203 (2008).

  46. 46.

    et al. Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3. Phys. Rev. Lett. 103, 047601 (2009).

  47. 47.

    et al. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat. Commun. 4, 1534 (2013).

  48. 48.

    et al. Designing switchable polarization and magnetization at room temperature in an oxide. Nature 525, 363–366 (2015).

  49. 49.

    , , , & Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

  50. 50.

    et al. Giant magnetoelectric effect in vacuum. Appl. Phys. Lett. 102, 232905 (2013).

  51. 51.

    et al. Displacement-type ferroelectricity with off-center magnetic ions in perovskite Sr1−xBaxMnO3. Phys. Rev. Lett. 107, 137601 (2011).

  52. 52.

    et al. Stability of spin-driven ferroelectricity in the thin-film limit: coupling of magnetic and electric order in multiferroic TbMnO3 films. Phys. Rev. B 88, 054401 (2013).

  53. 53.

    et al. Exchange biasing and electric polarization with YMnO3. Appl. Phys. Lett. 89, 032510 (2006).

  54. 54.

    , , & Strain effects on multiferroic BiFeO3 films. C. R. Phys. 16, 193–203 (2015).

  55. 55.

    , & Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev. 1, 021303 (2014).

  56. 56.

    , & BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter 26, 473201 (2014).

  57. 57.

    Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007).

  58. 58.

    & Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008).

  59. 59.

    Low energy consumption spintronics using multiferroic heterostructures. J. Phys. Condens. Matter 28, 033001 (2016).

  60. 60.

    et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006).

  61. 61.

    & Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005).

  62. 62.

    et al. Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett. 12, 1141–1145 (2012).

  63. 63.

    et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).

  64. 64.

    et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014). Presentation of the ultimate multiferroic device concept with repeated room-temperature magnetization reversal by an electric voltage.

  65. 65.

    et al. Interfacial coupling in multiferroic/ferromagnet heterostructures. Phys. Rev. B 87, 134426 (2013).

  66. 66.

    , , , & Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A = Sr, Ca). Phys. Rev. B 75, 054408 (2007).

  67. 67.

    , , , & Epitaxial stabilization of hexagonal RMnO3 (R = EuDy) manganites. J. Mater. Chem. 12, 800–801 (2002).

  68. 68.

    et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

  69. 69.

    et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013).

  70. 70.

    et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).

  71. 71.

    et al. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954–958 (2010).

  72. 72.

    et al. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat. Nanotechnol. 10, 661–665 (2015).

  73. 73.

    et al. Strain-induced ferromagnetism in antiferromagnetic LuMnO3 thin films. Phys. Rev. Lett. 111, 037201 (2013).

  74. 74.

    , & Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

  75. 75.

    et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).

  76. 76.

    , & Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci. Rep. 2, 258 (2012).

  77. 77.

    et al. Interface-induced room-temperature multiferroicity in BaTiO3. Nat. Mater. 10, 753–758 (2011). First paper to point out that multiferroicity can emerge at interfaces or domain walls.

  78. 78.

    & Polarized light studies of ferromagnetic/ferroelectric/ferroelastic domain patterns in NiCl and NiBr boracite. Ferroelectrics 36, 395–398 (1981).

  79. 79.

    , & Ferroelectric domains, birefringence and absorption of single crystals of BiFeO3. Ferroelectrics 55, 903–906 (1984).

  80. 80.

    , & Domains in ferroelectric YMnO3. Czechoslovak. J. Phys. 17, 559–560 (1967).

  81. 81.

    , & Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Amer. B 22, 96–118 (2005).

  82. 82.

    et al. Observation and coupling of domains in a spin-spiral multiferroic. Phys. Rev. Lett. 102, 107202 (2009).

  83. 83.

    et al. Polarization control at spin-driven ferroelectric domain walls. Nat. Commun. 6, 6661 (2015).

  84. 84.

    et al. Magnetoelectric domain control in multiferroic TbMnO3. Science 348, 1112–1115 (2015).

  85. 85.

    et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).

  86. 86.

    et al. Scaling behavior and beyond equilibrium in the hexagonal manganites. Phys. Rev. X 2, 041022 (2012).

  87. 87.

    et al. Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics. Nat. Phys. 10, 970–977 (2014).

  88. 88.

    Functional domain walls in multiferroics. J. Phys. Condens. Matter 27, 463003 (2015).

  89. 89.

    et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009). This work demonstrated that domain walls can be a source of novel effects and functionalities in ferroelectric and multiferroic materials.

  90. 90.

    in Mesoscopic Phenomena in Multifunctional Materials Synthesis, Characterization, Modeling and Applications Vol. 198 (eds Saxena, A. & Planes, A.) 201–223 (Springer, 2014).

  91. 91.

    , , , & Collective magnetism at multiferroic vortex domain walls. Nano Lett. 12, 6055–6059 (2012).

  92. 92.

    et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379–383 (2014).

  93. 93.

    et al. Dynamics of multiferroic domain wall in spin-cycloidal ferroelectric DyMnO3. Phys. Rev. Lett. 102, 057604 (2009).

  94. 94.

    , , , & Ultrafast polarization and magnetization response of multiferroic GaFeO3 using time-resolved nonlinear optical techniques. Phys. Rev. B 79, 140411 (2009).

  95. 95.

    et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203 (2012).

  96. 96.

    et al. Probing the interplay between quantum charge fluctuations and magnetic ordering in LuFe2O4. Sci. Rep. 3, 2654 (2013).

  97. 97.

    & Theoretically predicted picosecond optical switching of spin chirality in multiferroics. Phys. Rev. Lett. 105, 147202 (2010).

  98. 98.

    et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

  99. 99.

    et al. Coexistence of coupled magnetic phases in epitaxial TbMnO3 films revealed by ultrafast optical spectroscopy. Appl. Phys. Lett. 101, 122904 (2012).

  100. 100.

    , , , & Ultrafast switching of the electric polarization and magnetic chirality in BiFeO3 by an electric field. Phys. Rev. Lett. 112, 147601 (2014).

  101. 101.

    et al. Ultrafast carrier dynamics and radiative recombination in multiferroic BiFeO3. Appl. Phys. Lett. 100, 242904 (2012).

  102. 102.

    , , , & Time-resolved imaging of magnetoelectric switching in multiferroic MnWO4. Phys. Rev. B 84, 184404 (2011). First study of the dynamical evolution of magnetoelectric switching in a multiferroic.

  103. 103.

    et al. Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure. Nat. Commun. 5, 5832 (2014).

  104. 104.

    et al. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Phys. Rev. Lett. 112, 097602 (2014).

  105. 105.

    , , & Spontaneous nonreciprocal reflection of light from antiferromagnetic Cr2O3. J. Phys. Condens. Matter 5, 8233–8244 (1993).

  106. 106.

    Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123–R152 (2005).

  107. 107.

    , , , & Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 88, 094429 (2013).

  108. 108.

    Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B 2, 754–772 (1970).

  109. 109.

    Ferroic classifications extended to ferrotoroidic crystals. Acta Crystallogr. Sect. A 64, 316–320 (2008).

  110. 110.

    Electromagnetic interaction with parity violation. J. Exp. Theor. Phys. 6, 1184–1186 (1958).

  111. 111.

    , & The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).

  112. 112.

    & Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B 76, 214404 (2007).

  113. 113.

    et al. Observation of orbital currents in CuO. Science 332, 696–698 (2011).

  114. 114.

    , , & Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

  115. 115.

    , & Ferroic nature of magnetic toroidal order. Nat. Commun. 5, 4796 (2014).

  116. 116.

    et al. Primary ferrotoroidicity in antiferromagnets. Phys. Rev. B 92, 094431 (2015).

  117. 117.

    , & Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

  118. 118.

    , & Spin-rotation phenomena and magnetic phase diagrams of hexagonal RMnO3. J. Appl. Phys. 93, 8194–8196 (2003).

  119. 119.

    , , & Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009).

  120. 120.

    et al. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2, 97–100 (2006). This work identifies the magnetoelectric excitation of a multiferroic ground state.

  121. 121.

    et al. Origin of electromagnon excitations in multiferroic RMnO3. Phys. Rev. Lett. 102, 047203 (2009).

  122. 122.

    , , , & Evidence for electroactive excitation of the spin cycloid in TbMnO3. Phys. Rev. Lett. 104, 097202 (2010).

  123. 123.

    et al. Possible observation of cycloidal electromagnons in BiFeO3. Phys. Rev. Lett. 101, 037601 (2008).

  124. 124.

    et al. High-temperature electromagnons in the magnetically induced multiferroic cupric oxide driven by intersublattice exchange. Nat. Commun. 5, 3787 (2014).

  125. 125.

    , , , & Electromagnons in the spin collinear state of a triangular lattice antiferromagnet. Phys. Rev. Lett. 105, 097207 (2010).

  126. 126.

    Electrically active magnetic excitations in antiferromagnets. Low Temp. Phys. 38, 807–818 (2012).

  127. 127.

    Non-reciprocal directional dichroism as an extension of the magneto-electric effect. J. Magnet. Soc. Japan 27, 1111–1116 (2003).

  128. 128.

    & Electromagnetic wave propagation in (bianisotropic) magnetoelectric materials. J. Intelligent Mater. Systems Struct. 24, 651–668 (2012).

  129. 129.

    et al. Optical magnetoelectric effect in the polar GaFeO3 ferrimagnet. Phys. Rev. Lett. 93, 037403 (2004).

  130. 130.

    & Analysis of optical magnetoelectric effect in GaFeO3. Phys. Rev. B 80, 054418 (2009).

  131. 131.

    et al. One-way transparency of four-coloured spin-wave excitations in multiferroic materials. Nat. Commun. 5, 3203 (2014).

  132. 132.

    , & Gigantic optical magnetoelectric effect in CuB2O4. J. Phys. Soc. Japan 77, 013705 (2008).

  133. 133.

    , , Possibility of visual observation of antiferromagnetic domains. Appl. J. Phys. 34, 1233 (1963).

  134. 134.

    , , & Magnetoelectric spectroscopy of electronic transitions in antiferromagnetic Cr2O3. Phys. Rev. Lett. 76, 4628–4631 (1996).

  135. 135.

    et al. Enhanced optical magnetoelectric effect in a patterned polar ferrimagnet. Phys. Rev. Lett. 96, 167202 (2006).

  136. 136.

    & Nonreciprocal magnetic photonic crystals. Phys. Rev. E 63, 066609 (2001).

  137. 137.

    , , & Toroidal metamaterial. New J. Phys. 9, 324–324 (2007).

  138. 138.

    & Structurally chiral photonic crystals with magneto-optic activity: indirect photonic bandgaps, negative refraction, and superprism effects. J. Opt. Soc. Amer. B 22, 1199–1210 (2005).

  139. 139.

    et al. Optical magnetoelectric effect of patterned oxide superlattices with ferromagnetic interfaces. Phys. Rev. Lett. 99, 197404 (2007).

  140. 140.

    et al. Optical magnetoelectric effect in a submicron patterned magnet. Phys. Rev. Lett. 94, 077205 (2005).

  141. 141.

    et al. One-way transparency of light in multiferroic CuB2O4. Phys. Rev. Lett. 115, 267207 (2015).

  142. 142.

    & Theory of magneto-optical effects in helical multiferroic materials via toroidal magnon excitation. Phys. Rev. B 89, 195145 (2014).

  143. 143.

    , & Terahertz magnetoelectric resonance enhanced by mutual coupling of electromagnons. Phys. Rev. Lett. 111, 037204 (2013).

  144. 144.

    et al. Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat. Commun. 4, 2391 (2013).

  145. 145.

    et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

  146. 146.

    & Oxide interfaces — an opportunity for electronics. Science 327, 1607–1611 (2010).

  147. 147.

    et al. Femtoscale magnetically induced lattice distortions in multiferroic TbMnO3. Science 333, 1273–1276 (2011).

  148. 148.

    et al. A multiferroic material to search for the permanent electric dipole moment of the electron. Nat. Mater. 9, 649–654 (2010).

  149. 149.

    Room-temperature multiferroic magnetoelectrics. NPG Asia Mater. 5, e72 (2013).

  150. 150.

    & Multiferroic magnetoelectric fluorides: why are there so many magnetic ferroelectrics? J. Phys. Condens. Matter 23, 113202 (2011).

  151. 151.

    , & An organic approach for nanostructured multiferroics. Nanoscale 7, 9122–9132 (2015).

  152. 152.

    , & Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives. Mater. Today 17, 269–275 (2014).

  153. 153.

    Novel laminated multiferroic heterostructures for reconfigurable microwave devices. Chinese Sci. Bull. 59, 5180–5190 (2014).

  154. 154.

    Applications of magnetoelectrics. J. Mater. Chem. 22, 4567–4574 (2012).

  155. 155.

    , & Size-dependent electric voltage controlled magnetic anisotropy in multiferroic heterostructures: interface-charge and strain comediated magnetoelectric coupling. Phys. Rev. B 83, 134408 (2011).

  156. 156.

    et al. Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007).

  157. 157.

    Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

  158. 158.

    et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

  159. 159.

    et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

  160. 160.

    et al. Functional ferroic heterostructures with tunable integral symmetry. Nat. Commun. 5, 4295 (2014).

  161. 161.

    , & Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

  162. 162.

    et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

  163. 163.

    , , & Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

  164. 164.

    et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

  165. 165.

    Spin echoes. Phys. Rev. B 80, 580–594 (1950).

  166. 166.

    & Active noise control. IEEE Signal Process. Mag. 10, 12–35 (1993).

  167. 167.

    Introduction to Ferroic Materials (Gordon and Breach, 2000).

  168. 168.

    et al. Ferroelectricity in an ising chain magnet. Phys. Rev. Lett. 100, 047601 (2008).

  169. 169.

    et al. Magnetic order and electromagnon excitations in DyMnO3 studied by neutron scattering experiments. Phys. Rev. B 90, 224418 (2014).

Download references

Acknowledgements

The authors would like to dedicate this work to Hans Schmid, who coined the field of multiferroics and has been a continuous source of inspiration, both professionally and personally. Sadly, Hans passed away on 2 April 2015. The authors also thank A. Cano, for many enlightening discussions and for critical reading of the manuscript, and M. Fechner, for calculating the lone-pair structure in Fig. 1a.

Author information

Affiliations

  1. Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.

    • Manfred Fiebig
    • , Thomas Lottermoser
    • , Dennis Meier
    •  & Morgan Trassin

Authors

  1. Search for Manfred Fiebig in:

  2. Search for Thomas Lottermoser in:

  3. Search for Dennis Meier in:

  4. Search for Morgan Trassin in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Manfred Fiebig.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/natrevmats.2016.46