Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

CRMPs: critical molecules for neurite morphogenesis and neuropsychiatric diseases

Subjects

Abstract

Neuronal polarity and spatial rearrangement of neuronal processes are central to the development of all mature nervous systems. Recent studies have highlighted the dynamic expression of Collapsin-Response-Mediator Proteins (CRMPs) in neuronal dendritic/axonal compartments, described their interaction with cytoskeleton proteins, identified their ability to activate L- and N-type voltage-gated calcium channels (VGCCs) and delineated their crucial role as signaling molecules essential for neuron differentiation and neural network development and maintenance. In addition, evidence obtained from genome-wide/genetic linkage/proteomic/translational approaches revealed that CRMP expression is altered in human pathologies including mental (schizophrenia and mood disorders) and neurological (Alzheimer’s, prion encephalopathy, epilepsy and others) disorders. Changes in CRMPs levels have been observed after psychotropic treatments, and disrupting CRMP2 binding to calcium channels blocked neuropathic pain. These observations, altogether with those obtained from genetically modified mice targeting individual CRMPs and RNA interference approaches, pave the way for considering CRMPs as potential early disease markers and modulation of their activity as therapeutic strategy for disorders associated with neurite abnormalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Tessier-Lavigne M, Kolodkin AL . Neuronal guidance. Cold Spring Harb Perspect Biol 2011; 3: 1–14.

    Google Scholar 

  2. Barnes AP, Polleux F . Establishment of axon-dendrite polarity in developing neurons. Ann Rev Neurosci 2009; 32: 347–381.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng P, Poo MM . Early events in Axon/Dendrite polarization. Annu Rev Neurosci 2012; 35: 181–201.

    Article  CAS  PubMed  Google Scholar 

  4. Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J . Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol Neurol 2003; 28: 51–64.

    CAS  Google Scholar 

  5. Schmidt EF, Strittmatter SM . The CRMP family of proteins and their role in Sema3A signaling. Adv Exp Med Biol 2007; 600: 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM . Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 1995; 376: 509–514.

    Article  CAS  PubMed  Google Scholar 

  7. Minturn JE, Fryer HJ, Geschwind DH, Hockfield S . Toad-64 a gene expressed early in neuronal differentiation in the rat is related to unc-33, a C-elegans gene involved in axon outgrowth. J Neurosci 1995; 15: 6757–6766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Byk T, Dobransky T, Sobel A . Identification and molecular characterization of Unc-33-like phosphoprotein (Ulip), a putative mammalian homolog of the axonal guidance-associate unc-33 gene product. J Neurosci 1996; 16: 688–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quach TT, Rong Y, Belin MF, Duchemin AM, Akaoka H, Ding S et al. Molecular cloning and expression of a new unc-33 like cDNA from rat brain and its relation to paraneoplastic neurological syndromes. Mol Brain Res 1997; 46: 329–332.

    Article  CAS  PubMed  Google Scholar 

  10. Wang LH, Strittmatter SM . A family of rat CRMP genes is differentially expressed in the nervous system. J Neurosci 1996; 16: 6197–6207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Byk T, Ozon S, Sobel A . The Ulip family phosphoproteins: common and specific properties. Eur J Biochem 1998; 254: 14–24.

    Article  CAS  PubMed  Google Scholar 

  12. Inatome R, Tsujimura T, Hitomi T, Mitsui N, Hermann P, Kuroda S et al. Identification of CRAM, a novel unc-33 gene family protein that associates with CRMP3 and protein tyrosine kinase(s) in the developing rat brain. J Biol Chem 2000; 275: 27291–27302.

    CAS  PubMed  Google Scholar 

  13. Quinn CC, Chen E, Kinjo TG, Bell AW, Eliott RC, McPherson PS et al. TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J Neurosci 2003; 23: 2815–2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimara T, Shiromizu T et al. CRMP2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 2002; 4: 583–591.

    Article  CAS  PubMed  Google Scholar 

  15. Uchida Y, Ohshima T, Yamashita N, Ogawara M, Sasaki Y, Nakamura F et al. Sema3A signaling mediated by Fyn-dependent tyrosine phosphorylation of CRMP2 at tyrosine 32. J Biol Chem 2009; 284: 27393–27401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leung T, Ng Y, Cheong A, Ng CH, Tan L, Hall C et al. P80 ROK alpha binding protein is a novel variant of CRMP1 which associates with CRMP2 and modulates RhoA-induced neuronal morphology. FEBS Lett 2002; 523: 445–449.

    Article  Google Scholar 

  17. Yamashita N, Morita A, Uchida Y, Nakamura F, Usui H, Ohshima T et al. Regulation of spine development by semaphorin 3A through cyclin-dependent kinase 5 phosphorylation of collapsin response mediator protein 1. J Neurosci 2007; 14: 12546–12554.

    Article  CAS  Google Scholar 

  18. Yamashita N, Uchida Y, Ohshima T, Hira S, Nakamura F, Taniguchi M et al. CRMP1 mediates reelin signaling in cortical neuronal migration. J Neurosci 2006; 26: 13357–13362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawano Y, Yoshimura T, Tsuboi D, Kawabata S, Kaneko-Kawano T, Shirataki H et al. CRMP2 is involved in kinesin-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol Cell Biol 2005; 25: 9920–9935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosslenbroich V, Dai L, Baader SL, Gieselmann V, Kappler J . Collapsin response mediator protein-4 regulates F-actin bundling. Exp Cell Res 2005; 310: 434–444.

    Article  CAS  PubMed  Google Scholar 

  21. Cole AR, Knebel A, Morrice NA, Robertson LA, Irving AJ, Connolly CN et al. GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J Biol Chem 2004; 279: 50176–50180.

    Article  CAS  PubMed  Google Scholar 

  22. Cole A . GSK-3 substrates in mood disorders and schizophrenia. FEBS J 2013; 280: 5213–5227.

    Article  CAS  PubMed  Google Scholar 

  23. Brennand JK, Simone A, Tran N, Gage FH . Modeling psychiatric disorders at the cellular and network levels. Mol Psychiatry 2012; 17: 1239–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Medina M, Avila J . New insights into the role of GSK-3 in Alzheimer’s disease. Expert Opin Ther Targets 2014; 18: 69–77.

    Article  CAS  PubMed  Google Scholar 

  25. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N et al. Semaphorin3A signaling is mediated via sequential Cdk5 and GSK3-β phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cell 2005; 10: 165–179.

    Article  CAS  Google Scholar 

  26. Yashimata N, Mosinger B, Roy A, Miyazaki M, Ugagin K, Sasaki Y et al. CRMP5 regulates dendritic development and synaptic plasticity in the cerebellar Purkinje cells. J Neurosci 2011; 31: 1773–1779.

    Article  CAS  Google Scholar 

  27. Yamashita N, Goshima Y . CRMPs regulate neuronal development and plasticity by switching their phosphorylation status. Mol Neurobiol 2012; 16: 933–944.

    Google Scholar 

  28. Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R . An atypical role for CRMP2 in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem 2009; 284: 31375–31390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quach TT, Wilson SM, Rogemond V, Chounlamountri N, Kolattukudy PE, Martinez S et al. Mapping CRMP3 domains involved in dendrite morphogenesis and voltage-gated calcium channel regulation. J Cell Sci 2013; 126: 4262–4273.

    Article  CAS  PubMed  Google Scholar 

  30. Alabed Y, Pool M, Ong Tone S, Fournier A . Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J Neurosci 2007; 27: 1702–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bretin S, Reibel S, Charier E, Maus-Motti M, Auvergon N, Thevenoux A et al. Differential expression of CRMP1, CRMP2A, CRMP2B and CRMP5 in axons or dendrites of distinct neurons in the mouse brain. J Comp Neurol 2005; 486: 1–17.

    Article  CAS  PubMed  Google Scholar 

  32. Quach TT, Mosinger B, Ricard D, Copeland NC, Gilbert DJ, Jenkins JA et al. Collapsin response mediator protein 3/unc33-like protein 4 gene: organization, chromosomal mapping and expression in the developing mouse brain. Gene 2000; 242: 175–182.

    Article  CAS  PubMed  Google Scholar 

  33. Kwiatkowski AV, Rubinson DA, Dent EW, Van Veen JE, Leslie JD, Zhang J et al. Ena/VASP is required for neuritogenesis in the developing cortex. Neuron 2007; 56: 441–455.

    Article  CAS  PubMed  Google Scholar 

  34. Brot S, Smaoune H, Youssef-Issa M, Malleval C, Benetollo C, Besancon R et al. CRMP5 phosphorylation at Threonine 516 regulates neurite outgrowth inhibition. Eur J Neurosci 2014; 40: 3010–3020.

    Article  PubMed  Google Scholar 

  35. Brot S, Auger C, Bentata R, Rogemond V, Menigoz S, Chounlamountri N et al. CRMP5 induces mitophagy, thereby regulating mitochondrion numbers in dendrites. J Biol Chem 2014; 289: 2261–2276.

    Article  CAS  PubMed  Google Scholar 

  36. Brot S, Rogemond V, Perrot V, Chounlamountri N, Auger C, Honnorat J et al. CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2. J Neurosci 2010; 30: 10639–10654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Niisato E, Nagai J, Yamashita N, Abe T, Kiyonari H, Goshima Y et al. CRMP4 suppresses apical dendrite bifurcation of CA1 pyramidal neurons in the mouse hippocampus. Dev Neurobiol 2012; 72: 1447–1457.

    Article  CAS  PubMed  Google Scholar 

  38. Yamashita N, Ohshima T, Nakamura F, Kolattukudy P, Honnorat J, Goshima Y . Phosphorylation of CRMP2 is involved in proper dendritic field organization. J Neurosci 2012; 32: 1360–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N et al. CRMP2 induces axons in cultured hippocampal neurons. Nat Neurosci 2001; 4: 781–782.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshimura T, Kawano Y, Arimura N, Kikuchi A, Kaibuchi K . GSK-3β regulates phosphorylation of CRMP2 and neuronal polarity. Cell 2005; 120: 137–149.

    Article  CAS  PubMed  Google Scholar 

  41. Nishimura T, Fukata Y, Kato K, Yamaguchi T, Matsuura Y, Kamiguchi H et al. CRMP-2 regulates polarized Num-mediated endocytosis for axon growth. Nat Cell Biol 2003; 5: 819–825.

    Article  CAS  PubMed  Google Scholar 

  42. Chi XX, Schmutzier BS, Brittain JM, Wang Y, Hintgen C, Nicol GD et al. Regulation of N-type voltage-gated calcium channels (Cav2.2) and transmitter release by CRMP2 in sensory neurons. J Cell Sci 2009; 122: 4351–4362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Quach TT, Duchemin AM, Rogemond V, Aguera M, Honnorat J, Belin MF et al. Involvement of collapsin response mediator proteins in the neurite extension produced by neurotrophins in dorsal root ganglion neurons. Mol Cell Neurosci 2004; 25: 433–443.

    Article  CAS  PubMed  Google Scholar 

  44. Charrier E, Mosinger B, Meisserel C, Aguera M, Rogemond V, Reibel S et al. Transient alterations in granule cells proliferation, apoptosis and migration in postnatal developing cerebellum of CRMP1−/− mice. Genes Cells 2006; 11: 1337–1352.

    Article  CAS  PubMed  Google Scholar 

  45. Ghogha A, Bruun DA, Lein P . Inducing dendritic growth in cultured sympathetic neurons. J Vis Exp 2012; 61: e3546.

    Google Scholar 

  46. Su SK, Chien WL, Fu WM, Yu IS, Huang HP, Huang PH et al. Mice deficient in CRMP1 exhibit impaired long-term potentiation and impaired spatial learning and memory. J Neurosci 2007; 27: 2513–2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamashita N, Takashi A, Takao K, Yamamoto T, Kolattukudy, Miyakawa T . Mice lacking CRMP1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition. Front Behav Neurosci 2013; 7: 216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Quach TT, Massicote G, Belin MF, Honnorat J, Glasper ER, Devries AC et al. CRMP3 is required for hippocampal CA1 dendritic organization and plasticity. FASEB J 2008; 2: 401–409.

    Article  CAS  Google Scholar 

  49. Demyanenko GK, Tsai AY, Maness PF . Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 1999; 19: 4907–4920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Camdessanche JP, Ferraud K, Boutahar N, Lassabliere F, Mutter M, Touret M et al. The CRMP5 onconeural protein is expressed in Schwann cells under axonal signals and regulates axon-Schwann cell interaction. J Neuropathol Exp Neurol 2012; 71: 298–311.

    Article  CAS  PubMed  Google Scholar 

  51. Rapoport JL, Gield JN, Gogtay N . Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 2012; 17: 1228–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Penzes P, Cahill ME, Jones KA, Vanderleuwen JE, Woolfrey KM . Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011; 14: 285–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jones LB, Johnson N, Byne N . Alterations in MAP2 immunocytochemistry in area 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res 2002; 114: 137–148.

    Article  CAS  PubMed  Google Scholar 

  54. Hall J, Trent S, Thomas KL, O'Donovan MC, Owen MJ . Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry 2015; 77: 52–58.

    Article  CAS  PubMed  Google Scholar 

  55. Bader V, Tomppo L, Trossbach SV, Bradshaw NJ, Prikulis I, Leliveld SR et al. Proteomic, genomic and translational approaches identify CRMP1 for a role in schizophrenia and its underlying traits. Hum Mol Genet 2012; 21: 4406–4418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quach TT, Glasper ER, Devries AC, Honnorat J, Kolattukudy PE . Altered prepulse inhibition in mice with dendrite abnormalities of hippocampal neurons. Mol Psychiatry 2008; 13: 656–658.

    Article  CAS  PubMed  Google Scholar 

  57. Hensley K, Venkova K, Christov A, Gunning W, Park J . CRMP2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 2011; 43: 180–191.

    Article  CAS  PubMed  Google Scholar 

  58. Martins de Souza D, Dias-Neto E, Schmitt A, Falkai P, Gormanns P, MacCarrone G et al. Proteome analysis of schizophrenia brain tissue. World J Biol Psychiatry 2010; 11: 110–120.

    Article  PubMed  Google Scholar 

  59. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. Mol Psychiatry 2000; 5: 142–149.

    CAS  PubMed  Google Scholar 

  60. Edgar PF, Douglas JE, Cooper GJ, Dean B, Kydd R, Faull RL . Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia. Mol Psychiatry 2000; 5: 85–90.

    Article  CAS  PubMed  Google Scholar 

  61. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004; 9: 684–697.

    Article  CAS  PubMed  Google Scholar 

  62. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D . Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics 2006; 6: 3414–3425.

    Article  CAS  PubMed  Google Scholar 

  63. Clark D, Dedova I, Cordwell S, Matsumoto I . A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 2006; 11: 459–470.

    Article  CAS  PubMed  Google Scholar 

  64. Pennington K, Dicker P, Dunn MJ, Cotter DR . Proteomic analysis reveals protein changes within layer 2 of the insular cortex in schizophrenia. Proteomics 2008; 8: 5097–5107.

    Article  CAS  PubMed  Google Scholar 

  65. Fallin MD, Lasseter VK, Liu Y, Avramopoulos D, McGrath J et al. Linkage and association on 8p21.2-p21.1 in Schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156: 188–197.

    Article  CAS  PubMed  Google Scholar 

  66. Blouin BA, Dombroski SK, Nath VK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  67. Gurling HM, Kalsi G, Brynjolson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia on chromosomes 1q32.2, 5q33.2 and 8p21.22 and provides support for linkage to schizophrenia on chromosomes 111q23.3 and 20q21.1-11-23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Holmans PA, Riley B, Pulver AE . Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Mol Psychiatry 2009; 14: 786–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y et al. The human dihydropyrimidinase-related protein 2 gene on chromosome 8p21 is associated with paranoid-type schizophrenia. Biol Psychiatry 2003; 53: 571–576.

    Article  CAS  PubMed  Google Scholar 

  70. Liu Y, Pham X, Zhang L, Chen PL, Burzynski G, McGaughey DM et al. Functional variants in DPYSL2 sequence increase risk of Schizophrenia and suggest a link to mTOR signaling. G3 (Bethesda) 2015; 5: 61–72.

    Article  CAS  Google Scholar 

  71. Koide T, Aleksic B, Ito Y, Usui H, Yoshimi A, Inada T et al. A two-stage case-control association study of the dihydropyrimidinase-like 2 gene (DPYSL2) with schizophrenia in Japanese subjects. J Hum Genet 2010; 55: 469–472.

    Article  CAS  PubMed  Google Scholar 

  72. Föcking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR . Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiatry 2011; 68: 477–488.

    Article  PubMed  Google Scholar 

  73. Hill MJ, Donocik JG, RA Nuamah, CA Mein . Sainz-Fuertes R1 Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells. Schizophr Res. 2014; 153: 225–230.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci USA 2012; 109: 3125–3130.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Buczak K et al. Clozapine influences cytoskeleton structure and calcium homeostasis in rat cerebral cortex and has a different proteomic profile than risperidone. J Neurochem 2015; 132: 657–676.

    Article  CAS  PubMed  Google Scholar 

  76. Pickering C, Ericson M, Söderpalm B . Chronic phencyclidine increases synapsin-1 and synaptic adaptation proteins in the medial prefrontal cortex. ISRN Psychiatry 2013; 620361.

  77. Mateus-Pinheiro A, Patrício P, Bessa JM, Sousa N, Pinto L . Cell genesis and dendritic plasticity: a neuroplastic pas de deux in the onset and remission from depression. Mol Psychiatry 2013; 18: 748–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dimatelis JJ, Stein DJ, Russel VA . Chronic exposure to light reverses the effect of maternal separation on proteins in the prefrontal cortex. J Mol Neurosci 2013; 51: 835–843.

    Article  CAS  PubMed  Google Scholar 

  79. Duman RS, Monteggia LM . A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–1127.

    Article  CAS  PubMed  Google Scholar 

  80. Molendjik ML, Spinhoven P, Polak M, Elzinger BM . Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analysis on 179 association (N: 9484). Mol Psy 2014; 19: 791–800.

    Article  CAS  Google Scholar 

  81. Brunoni AR, Lopes M, Fregni F . A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neurplasticity in depression. Int. J. Neuropsychopharmacol 2008; 11: 1169–1180.

    Article  CAS  PubMed  Google Scholar 

  82. Wong ML, Dong C, Andreev V, Arcos-Burgos M, Licinio J . Prediction of susceptibility to major depression by a model of interactions of multiple functional genetic variants and environment factors. Mol Psychiatry 2012; 17: 624–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Magarinos AM, Li CJ, Bath KC, Jing FS, Lee FS, McEven BS . Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 2011; 21: 253–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006; 314: 140–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schmidt HD, Duman RS . The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 2007; 18: 391–418.

    Article  CAS  PubMed  Google Scholar 

  86. Khawaja X, Xu J, Liang JJ, Barrett JE . Proteomic analysis of proteins changes developing in rat hippocampus after chronic antidepressants treatment: implications for depressive disorders and future therapies. J Neurosci Res 2004; 75: 451–460.

    Article  CAS  PubMed  Google Scholar 

  87. Hensley K, Venkova K, Christov A, Gunning W, Park J . Collapsin response mediator protein 2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 2011; 43: 180–191.

    Article  CAS  PubMed  Google Scholar 

  88. Duman RS, Aghajanian GK . Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012; 338: 68–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorders. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Caberlotto L, Carboni L, Zanderigo F, Andreetta F, Andreoli M, Gentile G et al. Differential effects of glycogen synthase kinase 3 (GSK3) inhibition by lithium or selective inhibitors in the central nervous system. Naunyn Schmiedebergs Arch Pharmacol 2013; 386: 893–903.

    Article  CAS  PubMed  Google Scholar 

  91. Lyoo IK, Dager SR, Kim JE, Yoon SJ, Friedman SD, Dunner DL et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study. Neuropsychopharmacology 2010; 35: 1743–1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hajek T, Cullis J, Novak T, Kopecek M, Höschl C, Blagdon R et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord 2012; 14: 261–270.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gildengers AG, Butters MA, Aizenstein HJ, Marron MM, Emanuel J, Anderson SJ et al. Longer lithium exposure is associated with better white matter integrity in older adults with bipolar disorder. Bipolar Disord 2014; 17: 248–256.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45: 984–994.

    Article  CAS  PubMed Central  Google Scholar 

  95. Frisoni GB, Sabattoli F, Lee AD, Dutton RA, Thompson PM . In vivo neuropathology of the hippocampal formation in Alzheimer’s disease: a radial mapping MR-based study. Neuroimage 2006; 32: 104–110.

    Article  CAS  PubMed  Google Scholar 

  96. Mucke L, Selkoe DJ . Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2012; 2: 1–17.

    Article  CAS  Google Scholar 

  97. Lu T, Aron L, Zullo J, Pan Y, Chen Y, Yang TH et al. REST and stress resistance in aging and Alzheimer’s disease. Nature 2014; 507: 448–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Woods NK, Padmanabhan J . Neuronal calcium signaling and Alzheimer disease. Adv Exp Med Biol 2012; 740: 1193–1217.

    Article  CAS  PubMed  Google Scholar 

  99. Soutar MP, Thornhill P, Cole AR, Sutherland C . Increased CRMP2 phosphorylation is observed in Alzheimer's disease; does this tell us anything about disease development? Curr Alzheimer Res 2009; 6: 269–278.

    Article  CAS  PubMed  Google Scholar 

  100. Cole AR, Noble W, Van Aalten L et al. CRMP2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem 2007; 103: 1132–1144.

    Article  CAS  PubMed  Google Scholar 

  101. Williamson R, van Alten L, Mann DM, Platt B, Plattner F, Bedford L et al. CRMP2 hyperphosphorylation is characteristic of Alzheimer's disease and not a feature common to other neurodegenerative diseases. J Alzheimers Dis 2011; 27: 615–625.

    Article  CAS  PubMed  Google Scholar 

  102. Wang Y, Yin H, Li J, Zhang Y, Han B, Zeng Z et al. Amelioration of β-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associated with suppression of CRMP-2 hyperphosphorylation. Neurosci Lett 2013; 557: 112–117.

    Article  CAS  PubMed  Google Scholar 

  103. Marshall KE, Marchante R, Serpell LC . The relationship between amyloid structure and cytotoxicity. Prion 2014; 8: 2.

    Article  CAS  Google Scholar 

  104. Prusiner SB . Biology and genetics of prions causing neurodegeneration. Ann Rev Genet 2013; 47: 601–623.

    Article  CAS  PubMed  Google Scholar 

  105. Auvergnon N, Reibel S, Touret M, Honnorat J, Baron T, Giraudon P et al. Altered expression of CRMPs in the brain of bovine spongiform encephalopathy-infected mice during disease progression. Brain Res 2009; 1261: 1–6.

    Article  CAS  PubMed  Google Scholar 

  106. Ishikura N, Clever JL, Bouzamondo-Berstein E, Prusiner SB, Huang EJ, DeArmond SJ . Notch-1 activation and dendritic dystrophy in prion disease. Proc Natl Acad Sci USA 2005; 102: 886–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shinkai-Ouchi F, Yamakawa Y, Hara H, Tobiume M, Nishijima M, Hagiwara K . Identification and structural analysis of C-terminally truncated CRMP2 in a murine model of prion diseases. Proteome Sci 2010; 8: 53–65.

    PubMed  PubMed Central  Google Scholar 

  108. Quach TT, Wang Y, Khanna R, Chounlamountri N, Auvergnon N, Honnorat J et al. Effect of CRMP3 expression on dystrophic dendrites of hippocampal neurons. Mol Psychiatry 2011; 16: 689–691.

    Article  CAS  PubMed  Google Scholar 

  109. Hirose S . A new paradigm of channelopathy in epilepsy syndromes: intracellular trafficking abnormality of ion channels dysfunction and channel molecules. Epilepsy Res 2006; 70S: S206–S217.

    Article  CAS  Google Scholar 

  110. Bonilha L, Nesland T, Martz GU, Joseph JE, Spampinato MW, Tabesh A . Medial temporal lobe epilepsy is associated with neuronal fiber loss and paradoxal increase in structural connectivity in limbic structures. J Neurol Neurosurg Psychiatry 2012; 83: 903–909.

    Article  PubMed  Google Scholar 

  111. Bernhardt BC, Worsley KJ, Besson J, Concha L, Lerch JP, Evans AC et al. Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations insights on the relation between mesiotemporal connectivity and cortical atrophy. Neuroimage 2008; 42: 512–524.

    Article  Google Scholar 

  112. DeSalvo MN, Douw L, Tanaka N, Reinsberger C, Stufflebeam SM . Altered structural connectome in temporal lobe epilepsy. Radiology 2014; 270: 842–848.

    Article  PubMed  Google Scholar 

  113. Luo J, Zeng K, Zhang C, Fang M, Zhu Q, Wang L et al. Down-regulation of CRMP1 in patients with epilepsy and a rat model. Neurochem Res 2012; 37: 1381–1391.

    Article  CAS  PubMed  Google Scholar 

  114. Czech T, Yang JW, Csaszar E, Kappler J, Baumgardner C, Lubec G . Reduction of hippocampal CRMP2 in patients with mesial temporal lobe epilepsy. Neurochem Res 2004; 29: 2189–2196.

    Article  CAS  PubMed  Google Scholar 

  115. Wang Y, Brittain J, Jarecki BW, Wilson S, Wang B, Hale R et al. In silico docking and electrophysiological characterization of Lacosamide binding sites on CRMP2 identifies a pocket important in modulating sodium channels slow inactivation. J Biol Chem 2010; 285: 25296–25307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bridges D, Thompson SWN, Rice ASC . Mechanisms of neuropathic pain. Br J Anaesthesia 2001; 87: 12–26.

    Article  CAS  Google Scholar 

  117. Cohen SP, Mao J . Neuropathic pain: mechanisms and their clinical implications. Br Med J 2014; 348: f7656.

    Article  Google Scholar 

  118. Tan AM, Samad OA, Fischer TZ, Zhao P, Persson AK, Waxman SG . Maladaptive dendritic spine remodeling contributes to diabetic neuropathic pain. J Neurosci 2012; 32: 6795–6807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim C, Jun K, Lee T, Kim SS, McEnery MW, Chin H et al. Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel. Mol Cell Neurosci 2001; 18: 235–245.

    Article  CAS  PubMed  Google Scholar 

  120. Cao YQ . Voltage-gated calcium channels and pain. Pain 2006; 126: 5–9.

    Article  CAS  PubMed  Google Scholar 

  121. Brittain JM, Duarte DB, Wilson SM, Zhu W, Ballard C, Johnson PL et al. Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex. Nat Med 2011; 17: 822–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ju W, Li Q, Allette YM, Ripsch MS, White FA, Khanna R . Suppression of pain-related behavior in two distinct rodent models of peripheral neuropathy by a homopolyarginine-conjugated CRMP2 peptide. J Neurochem 2012; 124: 869–879.

    Article  CAS  Google Scholar 

  123. Ripsch MS, Ballard CJ, Khanna M, Hurley JH, White FA, Khanna R . A peptide uncoupling CRMP2 from the presynaptic Ca(2+) channel complex demonstrates efficacy in animal models of migraine and AIDS therapy-induced neuropathy. Transl Neurosci 2012; 3: 1–8.

    Article  PubMed  Google Scholar 

  124. Piekarz AD, Due MR, Khanna M, Wang B, Ripsch MS, Wang R et al. CRMP2 peptide mediated decrease of high and low voltage-activated Ca2+ channels, attenuation of nociceptor excitability, and anti-noception in a model of AIDS therapy-induced painful peripheral neuropathy. Mol Pain 2012; 8: 1–19.

    Article  CAS  Google Scholar 

  125. Fischer G, Pan B, Vilceam D, Hogan OH, Yu H . Sustained relief of neuropathic pain by AAV-targeted expression of CBD3 peptide in rat DRG. Gene Ther 2014; 21: 44–51.

    Article  CAS  PubMed  Google Scholar 

  126. Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA et al. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain 2012; 135: 1794–1818.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tsutiya A, Ohtani-Kaneko R . Post-natal alteration of CRMP4 mRNA expression in the mouse brain. J Anat 2012; 221: 341–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ricard D, Rogemond V, Charrier E, Bagnard D, Belin MF, Thomasset N et al. Isolation and expression of human Ulip6/CRMP5: coexistence with Ulip2/CRMP2 in Sema3A-sensitive oligodendrocytes. J Neurosci 2001; 21: 7203–7214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Marques JM, Rodrigues RJ, Valbuena S, Rozas JL, Selak S, Marin P et al. CRMP2 tethers kainate receptor activity to cytoskeleton dynamics during neuronal maturation. J Neurosci 2013; 33: 18298–18310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr A Frostholm, Department of Neuroscience, The Ohio State University, for her critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Duchemin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quach, T., Honnorat, J., Kolattukudy, P. et al. CRMPs: critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry 20, 1037–1045 (2015). https://doi.org/10.1038/mp.2015.77

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.77

This article is cited by

Search

Quick links