Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DPYSL2/CRMP2 isoform B knockout in human iPSC-derived glutamatergic neurons confirms its role in mTOR signaling and neurodevelopmental disorders

Abstract

The DPYSL2/CRMP2 gene encodes a microtubule-stabilizing protein crucial for neurogenesis and is associated with numerous psychiatric and neurodegenerative disorders including schizophrenia, bipolar disorder, and Alzheimer’s disease. DPYSL2 generates multiple RNA and protein isoforms, but few studies have differentiated between them. We previously reported an association of a functional variant in the DPYSL2-B isoform with schizophrenia (SCZ) and demonstrated in HEK293 cells that this variant reduced the length of cellular projections and created transcriptomic changes that captured schizophrenia etiology by disrupting mTOR signaling-mediated regulation. In the present study, we follow up on these results by creating, to our knowledge, the first models of endogenous DPYSL2-B knockout in human induced pluripotent stem cells (iPSCs) and neurons. CRISPR/Cas9-faciliated knockout of DPYSL2-B in iPSCs followed by Ngn2-induced differentiation to glutamatergic neurons showed a reduction in DPYSL2-B/CRMP2-B RNA and protein with no observable impact on DPYSL2-A/CRMP2-A. The average length of dendrites in knockout neurons was reduced up to 58% compared to controls. Transcriptome analysis revealed disruptions in pathways highly relevant to psychiatric disease including mTOR signaling, cytoskeletal dynamics, immune function, calcium signaling, and cholesterol biosynthesis. We also observed a significant enrichment of the differentially expressed genes in SCZ-associated loci from genome-wide association studies (GWAS). Our findings expand our previous results to neuronal cells, clarify the functions of the human DPYSL2-B isoform and confirm its involvement in molecular pathologies shared between many psychiatric diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation and characterization of DPYSL2-B frameshift iPSCs.
Fig. 2: Generation and characterization of DPYSL2-B frameshift glutamatergic neurons.
Fig. 3: Transcriptomic analysis of DPYSL2-B frameshift neurons.

Similar content being viewed by others

References

  1. Quach TT, Honnorat J, Kolattukudy PE, Khanna R, Duchemin AM. CRMPs: Critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry. 2015;20:1037–45.

    Article  CAS  PubMed  Google Scholar 

  2. Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, et al. Dysregulation of CRMP2 post-translational modifications drive its pathological functions. Mol Neurobiol. 2019;56:6736–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature. 1995;376:509–14.

    Article  CAS  PubMed  Google Scholar 

  4. West M, Sutherland DE, Matas AJ. Kidney transplant recipients who die with functioning grafts: serum creatinine level and cause of death. Transplantation. 1996;62:1029–30.

    Article  CAS  PubMed  Google Scholar 

  5. Akinaga S, Harada S, Takahashi M, Kaneko A, Kolattukudy P, Goshima Y, et al. Loss of CRMP1 and CRMP2 results in migration defects of Purkinje cells in the X lobule of the mouse cerebellum. Brain Res. 2022;1783:147846.

    Article  CAS  PubMed  Google Scholar 

  6. Yamazaki Y, Moizumi M, Nagai J, Hatashita Y, Cai T, Kolattukudy P, et al. Requirement of CRMP2 Phosphorylation in Neuronal Migration of Developing Mouse Cerebral Cortex and Hippocampus and Redundant Roles of CRMP1 and CRMP4. Cereb Cortex. 2022;32:520–7.

    Article  PubMed  Google Scholar 

  7. Chi XX, Schmutzler BS, Brittain JM, Wang Y, Hingtgen CM, Nicol GD, et al. Regulation of N-type voltage-gated calcium channels (Cav2.2) and transmitter release by collapsin response mediator protein-2 (CRMP-2) in sensory neurons. J Cell Sci. 2009;122:4351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R. An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem. 2009;284:31375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brustovetsky T, Khanna R, Brustovetsky N. CRMP2 is involved in regulation of mitochondrial morphology and motility in neurons. Cells. 2021;10:2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ziak J, Weissova R, Jerabkova K, Janikova M, Maimon R, Petrasek T, et al. CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling. EMBO Rep. 2020;21:e48512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ip JP, Fu AK, Ip NY. CRMP2: functional roles in neural development and therapeutic potential in neurological diseases. Neuroscientist. 2014;20:589–98.

    Article  PubMed  Google Scholar 

  12. Pham X, Song G, Lao S, Goff L, Zhu H, Valle D, et al. The DPYSL2 gene connects mTOR and schizophrenia. Transl Psychiatry. 2016;6:e933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morita T, Sobue K. Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway. J Biol Chem. 2009;284:27734–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cockman E, Anderson P, Ivanov P. TOP mRNPs: Molecular mechanisms and principles of regulation. Biomolecules. 2020;10:969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet. 2005;77:918–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry. 2000;5:142–9.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Pham X, Zhang L, Chen PL, Burzynski G, McGaughey DM, et al. Functional variants in DPYSL2 sequence increase risk of schizophrenia and suggest a link to mTOR signaling. G3 (Bethesda). 2014;5:61–72.

    Article  PubMed  Google Scholar 

  18. Nakamura H, Yamashita N, Kimura A, Kimura Y, Hirano H, Makihara H, et al. Comprehensive behavioral study and proteomic analyses of CRMP2-deficient mice. Genes Cells. 2016;21:1059–79.

    Article  CAS  PubMed  Google Scholar 

  19. Nomoto M, Konopaske GT, Yamashita N, Aoki R, Jitsuki-Takahashi A, Nakamura H, et al. Clinical evidence that a dysregulated master neural network modulator may aid in diagnosing schizophrenia. Proc Natl Acad Sci USA. 2021;118:e2100032118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cole AR, Noble W, van Aalten L, Plattner F, Meimaridou R, Hogan D, et al. Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem. 2007;103:1132–44.

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Yang J, Schneider JA, De Jager PL, Bennett DA, Zhang HY. Genome-wide interaction analysis of pathological hallmarks in Alzheimer’s disease. Neurobiol Aging. 2020;93:61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshida H, Watanabe A, Ihara Y. Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer’s disease. J Biol Chem. 1998;273:9761–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ozgen HM, Staal WG, Barber JC, de Jonge MV, Eleveld MJ, Beemer FA, et al. A novel 6.14 Mb duplication of chromosome 8p21 in a patient with autism and self mutilation. J Autism Dev Disord. 2009;39:322–9.

    Article  PubMed  Google Scholar 

  24. Suzuki H, Li S, Tokutomi T, Takeuchi C, Takahashi M, Yamada M, et al. De novo non-synonymous DPYSL2 (CRMP2) variants in two patients with intellectual disabilities and documentation of functional relevance through zebrafish rescue and cellular transfection experiments. Hum Mol Genet. 2022;31:4173–82.

    Article  CAS  PubMed  Google Scholar 

  25. Weitzdoerfer R, Fountoulakis M, Lubec G. Aberrant expression of dihydropyrimidinase related proteins-2,-3 and -4 in fetal Down syndrome brain. J Neural Transm Suppl. 2001;61:95–107.

    Google Scholar 

  26. Khanna R, Moutal A, Perez-Miller S, Chefdeville A, Boinon L, Patek M. Druggability of CRMP2 for Neurodegenerative Diseases. ACS Chem Neurosci. 2020;11:2492–505.

    Article  CAS  PubMed  Google Scholar 

  27. Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, et al. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain. 2012;135:1794–818.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yuasa-Kawada J, Suzuki R, Kano F, Ohkawara T, Murata M, Noda M. Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization. Eur J Neurosci. 2003;17:2329–43.

    Article  PubMed  Google Scholar 

  29. Quinn CC, Chen E, Kinjo TG, Kelly G, Bell AW, Elliott RC, et al. TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J Neurosci. 2003;23:2815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adikusuma F, Pfitzner C, Thomas PQ. Versatile single-step-assembly CRISPR/Cas9 vectors for dual gRNA expression. PLoS One. 2017;12:e0187236.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Das D, Peng X, Lam AN, Bader JS, Avramopoulos D. Transcriptome analysis of human induced excitatory neurons supports a strong effect of clozapine on cholesterol biosynthesis. Schizophr Res. 2021;228:324–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Page SC, Sripathy SR, Farinelli F, Ye Z, Wang Y, Hiler DJ, et al. Electrophysiological measures from human iPSC-derived neurons are associated with schizophrenia clinical status and predict individual cognitive performance. Proc Natl Acad Sci USA. 2022;119:e2109395119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ho SY, Chao CY, Huang HL, Chiu TW, Charoenkwan P, Hwang E. NeurphologyJ: an automatic neuronal morphology quantification method and its application in pharmacological discovery. BMC Bioinforma. 2011;12:230.

    Article  Google Scholar 

  35. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.

    Article  PubMed  Google Scholar 

  40. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Trubetskoy V, Pardinas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dobrindt K, Zhang H, Das D, Abdollahi S, Prorok T, Ghosh S, et al. Publicly Available hiPSC Lines with Extreme Polygenic Risk Scores for Modeling Schizophrenia. Complex Psychiatry. 2021;6:68–82.

    Article  PubMed  Google Scholar 

  43. Das D, Sonthalia S, Stein-O’Brien G, Wahbeh M, Feuer K, Colantuoni C, et al. Insights for disease modeling from single cell transcriptomics of iPSC-derived neurons and astrocytes across differentiation time and co-culture. bioRxiv 2022: 2022.2006.2015.495952.

  44. Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78:785–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N. Y Acad Sci. 2015;1338:38–57.

    Article  CAS  PubMed  Google Scholar 

  46. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–7.

  47. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–12.

    Article  CAS  PubMed  Google Scholar 

  49. Mungall CJ, McMurry JA, Kohler S, Balhoff JP, Borromeo C, Brush M, et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 2017;45:D712–22.

    Article  CAS  PubMed  Google Scholar 

  50. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168:960–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ryskalin L, Limanaqi F, Frati A, Busceti CL, Fornai F. mTOR-Related Brain Dysfunctions in Neuropsychiatric Disorders. Int J Mol Sci. 2018;19:2226.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Na EJ, Nam HY, Park J, Chung MA, Woo HA, Kim HJ. PI3K-mTOR-S6K Signaling Mediates Neuronal Viability via Collapsin Response Mediator Protein-2 Expression. Front Mol Neurosci. 2017;10:288.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Uriguen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharm. 2020;11:344.

    Article  CAS  Google Scholar 

  55. Izumi R, Hino M, Nagaoka A, Shishido R, Kakita A, Hoshino M, et al. Dysregulation of DPYSL2 expression by mTOR signaling in schizophrenia: Multi-level study of postmortem brain. Neurosci Res. 2022;175:73–81.

    Article  CAS  PubMed  Google Scholar 

  56. Chadha R, Meador-Woodruff JH. Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia. Neuropsychopharmacology. 2020;45:1059–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7:11773.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Makihara H, Nakai S, Ohkubo W, Yamashita N, Nakamura F, Kiyonari H, et al. CRMP1 and CRMP2 have synergistic but distinct roles in dendritic development. Genes Cells. 2016;21:994–1005.

    Article  CAS  PubMed  Google Scholar 

  59. Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N, et al. CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci. 2001;4:781–2.

    Article  CAS  PubMed  Google Scholar 

  60. Tischfield MA, Baris HN, Wu C, Rudolph G, Van Maldergem L, He W, et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell. 2010;140:74–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith EF, Lefebvre PA. The role of central apparatus components in flagellar motility and microtubule assembly. Cell Motil Cytoskeleton. 1997;38:1–8.

    Article  CAS  PubMed  Google Scholar 

  62. Xiong W, Cai J, Li R, Wen C, Tan H. On Behalf Of The Alzheimer’s Disease Neuroimaging Initiative Adni D. Rare Variant Analysis and Molecular Dynamics Simulation in Alzheimer’s Disease Identifies Exonic Variants in FLG. Genes (Basel). 2022;13:838.

    Article  CAS  PubMed  Google Scholar 

  63. Altuna M, Urdanoz-Casado A, Sanchez-Ruiz de Gordoa J, Zelaya MV, Labarga A, Lepesant JMJ, et al. DNA methylation signature of human hippocampus in Alzheimer’s disease is linked to neurogenesis. Clin Epigenetics. 2019;11:91.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bond CS, Fox AH. Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol. 2009;186:637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sayad A, Omrani MD, Fallah H, Taheri M, Ghafouri-Fard S. Aberrant Expression of Long Non-coding RNAs in Peripheral Blood of Autistic Patients. J Mol Neurosci. 2019;67:276–81.

    Article  CAS  PubMed  Google Scholar 

  66. Safari MR, Komaki A, Arsang-Jang S, Taheri M, Ghafouri-Fard S. Expression Pattern of Long Non-coding RNAs in Schizophrenic Patients. Cell Mol Neurobiol. 2019;39:211–21.

    Article  CAS  PubMed  Google Scholar 

  67. Sunwoo JS, Lee ST, Im W, Lee M, Byun JI, Jung KH, et al. Altered Expression of the Long Noncoding RNA NEAT1 in Huntington’s Disease. Mol Neurobiol. 2017;54:1577–86.

    Article  CAS  PubMed  Google Scholar 

  68. Spreafico M, Grillo B, Rusconi F, Battaglioli E, Venturin M. Multiple Layers of CDK5R1 Regulation in Alzheimer’s Disease Implicate Long Non-Coding RNAs. Int J Mol Sci. 2018;19:2022.

    Article  PubMed  PubMed Central  Google Scholar 

  69. He L, Chen Z, Wang J, Feng H. Expression relationship and significance of NEAT1 and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer’s disease. BMC Neurol. 2022;22:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao Y, Wang Z, Mao Y, Li B, Zhu Y, Zhang S, et al. NEAT1 regulates microtubule stabilization via FZD3/GSK3beta/P-tau pathway in SH-SY5Y cells and APP/PS1 mice. Aging (Albany NY). 2020;12:23233–50.

    CAS  PubMed  Google Scholar 

  71. Ramakrishnan AB, Sinha A, Fan VB, Cadigan KM. The Wnt Transcriptional Switch: TLE Removal or Inactivation? Bioessays. 2018;40:10.

    Article  Google Scholar 

  72. Schmidt EF, Shim SO, Strittmatter SM. Release of MICAL autoinhibition by semaphorin-plexin signaling promotes interaction with collapsin response mediator protein. J Neurosci. 2008;28:2287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang S, Bao Z, Liang QM, Long JW, Xiao ZS, Jiang ZJ, et al. Octreotide stimulates somatostatin receptor-induced apoptosis of SW480 colon cancer cells by activation of glycogen synthase kinase-3beta, A Wnt/beta-catenin pathway modulator. Hepatogastroenterology. 2013;60:1639–46.

    CAS  PubMed  Google Scholar 

  74. Fogel BL, Wexler E, Wahnich A, Friedrich T, Vijayendran C, Gao F, et al. RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum Mol Genet. 2012;21:4171–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee JA, Damianov A, Lin CH, Fontes M, Parikshak NN, Anderson ES, et al. Cytoplasmic Rbfox1 Regulates the Expression of Synaptic and Autism-Related Genes. Neuron. 2016;89:113–28.

    Article  CAS  PubMed  Google Scholar 

  76. Arimura N, Hattori A, Kimura T, Nakamuta S, Funahashi Y, Hirotsune S, et al. CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity. J Neurochem. 2009;111:380–90.

    Article  CAS  PubMed  Google Scholar 

  77. Wang Y, Cheng C, Zhang Z, Wang J, Wang Y, Li X, et al. Blood-based dynamic genomic signature for obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet. 2018;177:709–16.

    Article  CAS  PubMed  Google Scholar 

  78. Rosslenbroich V, Dai L, Franken S, Gehrke M, Junghans U, Gieselmann V, et al. Subcellular localization of collapsin response mediator proteins to lipid rafts. Biochem Biophys Res Commun. 2003;305:392–9.

    Article  CAS  PubMed  Google Scholar 

  79. Chang YH, Tsai JN, Chang SW, Hsu WT, Yang CP, Hsiao CW, et al. Regulation of Adipogenesis and Lipid Deposits by Collapsin Response Mediator Protein 2. Int J Mol Sci. 2020;21:2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Whitehead SN, Gangaraju S, Slinn J, Hou ST. Transient and bilateral increase in Neuropilin-1, Fer kinase and collapsin response mediator proteins within membrane rafts following unilateral occlusion of the middle cerebral artery in mouse. Brain Res. 2010;1344:209–16.

    Article  CAS  PubMed  Google Scholar 

  81. Polymeropoulos MH, Licamele L, Volpi S, Mack K, Mitkus SN, Carstea ED, et al. Common effect of antipsychotics on the biosynthesis and regulation of fatty acids and cholesterol supports a key role of lipid homeostasis in schizophrenia. Schizophr Res. 2009;108:134–42.

    Article  PubMed  Google Scholar 

  82. Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6:254–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Takahashi N, Sakurai T, Davis KL, Buxbaum JD. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol. 2011;93:13–24.

    Article  CAS  PubMed  Google Scholar 

  84. Ferno J, Raeder MB, Vik-Mo AO, Skrede S, Glambek M, Tronstad KJ, et al. Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? Pharmacogenomics J. 2005;5:298–304.

    Article  CAS  PubMed  Google Scholar 

  85. Balastik M, Zhou XZ, Alberich-Jorda M, Weissova R, Ziak J, Pazyra-Murphy MF, et al. Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons. Cell Rep. 2015;13:812–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boukouris AE, Zhang Y, Saleme B, Kinnaird A, Zhao YY, Liu Y, et al. A reversible metabolic stress-sensitive regulation of CRMP2A orchestrates EMT/stemness and increases metastatic potential in cancer. Cell Rep. 2022;38:110511.

    Article  CAS  PubMed  Google Scholar 

  87. Noura M, Morita K, Kiyose H, Okuno Y, Matsuo H, Koyama A, et al. Albendazole induces the terminal differentiation of acute myeloid leukaemia cells to monocytes by stimulating the Kruppel-like factor 4-dihydropyrimidinase-like 2A (KLF4-DPYSL2A) axis. Br J Haematol. 2021;194:598–603.

    Article  CAS  PubMed  Google Scholar 

  88. Noura M, Morita K, Kiyose H, Matsuo H, Nishinaka-Arai Y, Kurokawa M, et al. Pivotal role of DPYSL2A in KLF4-mediated monocytic differentiation of acute myeloid leukemia cells. Sci Rep. 2020;10:20245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Debamitra Das and Dr. Linglei Jiang for their advice on neuronal differentiation and neuronal protein extraction, respectively. Thank you to Dr. Arianna Anzmann, Dr. Sarah Poll and Olivia Sniezek for their guidance on Western blotting, and Cassandra Obie for tissue culture support. Thank you to Lindsay Young for assisting with off-target analysis and Marah Wahbeh for troubleshooting support. We would also like to thank Dr. Vasiliki Machairaki and her lab for their help with immunocytochemistry and fluorescence microscopy. This project was funded by National Institute of Mental Health grants P50 MH094268, R01 MH113215 and RF1 MH122936 to DA. Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

KLF performed all the laboratory work, performed bioinformatics analysis, and contributed significantly to writing and editing the manuscript. XP performed RNA sequencing data analysis and differential expression analysis and proofreading of the manuscript. CKY provided support for all laboratory aspects of the project (reagent orders and preparation, support with tissue cultures) and proofreading of the manuscript. DA conceptualized and designed the project, supervised and interpreted experiments, contributed to writing and editing the manuscript and secured the necessary funding.

Corresponding author

Correspondence to Dimitrios Avramopoulos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feuer, K.L., Peng, X., Yovo, C.K. et al. DPYSL2/CRMP2 isoform B knockout in human iPSC-derived glutamatergic neurons confirms its role in mTOR signaling and neurodevelopmental disorders. Mol Psychiatry 28, 4353–4362 (2023). https://doi.org/10.1038/s41380-023-02186-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02186-w

This article is cited by

Search

Quick links