Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role for neonatal D-serine signaling: prevention of physiological and behavioral deficits in adult Pick1 knockout mice

Subjects

Abstract

NMDA glutamate receptors have key roles in brain development, function and dysfunction. Regulatory roles of D-serine in NMDA receptor-mediated synaptic plasticity have been reported. Nonetheless, it is unclear whether and how neonatal deficits in NMDA-receptor-mediated neurotransmission affect adult brain functions and behavior. Likewise, the role of D-serine during development remains elusive. Here we report behavioral and electrophysiological deficits associated with the frontal cortex in Pick1 knockout mice, which show D-serine deficits in a neonatal- and forebrain-specific manner. The pathological manifestations observed in adult Pick1 mice are rescued by transient neonatal supplementation of D-serine, but not by a similar treatment in adulthood. These results indicate a role for D-serine in neurodevelopment and provide novel insights on how we interpret data of psychiatric genetics, indicating the involvement of genes associated with D-serine synthesis and degradation, as well as how we consider animal models with neonatal application of NMDA receptor antagonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Paré D . Presynaptic induction and expression of NMDA-dependent LTP. Trends Neurosci 2004; 27: 440–441.

    Article  Google Scholar 

  2. Anwyl R . Induction and expression mechanisms of postsynaptic NMDA receptor-independent homosynaptic long-term depression. Prog Neurobiol 2006; 78: 17–37.

    Article  CAS  Google Scholar 

  3. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 2006; 125: 775–784.

    Article  CAS  Google Scholar 

  4. Snyder SH, Kim PM . D-amino acids as putative neurotransmitters: focus on D-serine. Neurochem Res 2000; 25: 553–560.

    Article  CAS  Google Scholar 

  5. Wolosker H . D-serine regulation of NMDA receptor activity. Sci STKE 2006; 2006: pe41.

    Article  Google Scholar 

  6. Martineau M, Baux G, Mothet JP . D-serine signalling in the brain: friend and foe. Trends Neurosci 2006; 29: 481–491.

    Article  CAS  Google Scholar 

  7. Lee JM, Zipfel GJ, Choi DW . The changing landscape of ischaemic brain injury mechanisms. Nature 1999; 399: A7–A14.

    Article  CAS  Google Scholar 

  8. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2005; 8: 1051–1058.

    Article  CAS  Google Scholar 

  9. Milnerwood AJ, Raymond LA . Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends Neurosci 2010; 33: 513–523.

    Article  CAS  Google Scholar 

  10. Kalia LV, Kalia SK, Salter MW . NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol 2008; 7: 742–755.

    Article  CAS  Google Scholar 

  11. Swanson RA, Ying W, Kauppinen TM . Astrocyte influences on ischemic neuronal death. Curr Mol Med 2004; 4: 193–205.

    Article  CAS  Google Scholar 

  12. Rossi DJ, Brady JD, Mohr C . Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 2007; 10: 1377–1386.

    Article  CAS  Google Scholar 

  13. Sasabe J, Chiba T, Yamada M, Okamoto K, Nishimoto I, Matsuoka M et al. D-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J 2007; 26: 4149–4159.

    Article  CAS  Google Scholar 

  14. Ben-Ari Y . Developing networks play a similar melody. Trends Neurosci 2001; 24: 353–360.

    Article  CAS  Google Scholar 

  15. Blankenship AG, Feller MB . Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 2010; 11: 18–29.

    Article  CAS  Google Scholar 

  16. Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R . Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 1997; 18: 243–255.

    Article  CAS  Google Scholar 

  17. Allène C, Cattani A, Ackman JB, Bonifazi P, Aniksztejn L, Ben-Ari Y et al. Sequential generation of two distinct synapse-driven network patterns in developing neocortex. J Neurosci 2008; 28: 12851–12863.

    Article  Google Scholar 

  18. Voigt T, Opitz T, de Lima AD . Activation of early silent synapses by spontaneous synchronous network activity limits the range of neocortical connections. J Neurosci 2005; 25: 4605–4615.

    Article  CAS  Google Scholar 

  19. Fujii K, Maeda K, Hikida T, Mustafa AK, Balkissoon R, Xia J et al. Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 2006; 11: 150–157.

    Article  CAS  Google Scholar 

  20. Focant MC, Goursaud S, Boucherie C, Dumont AO, Hermans E . PICK1 expression in reactive astrocytes within the spinal cord of amyotrophic lateral sclerosis (ALS) rats. Neuropathol Appl Neurobiol 2013; 39: 231–242.

    Article  CAS  Google Scholar 

  21. Hikida T, Mustafa AK, Maeda K, Fujii K, Barrow RK, Saleh M et al. Modulation of D-serine levels in brains of mice lacking PICK1. Biol Psychiatry 2008; 63: 997–1000.

    Article  CAS  Google Scholar 

  22. Gardner SM, Takamiya K, Xia J, Suh JG, Johnson R, Yu S et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 2005; 45: 903–915.

    Article  CAS  Google Scholar 

  23. Suh YH, Pelkey KA, Lavezzari G, Roche PA, Huganir RL, McBain CJ et al. Corequirement of PICK1 binding and PKC phosphorylation for stable surface expression of the metabotropic glutamate receptor mGluR7. Neuron 2008; 58: 736–748.

    Article  CAS  Google Scholar 

  24. Terashima A, Pelkey KA, Rah JC, Suh YH, Roche KW, Collingridge GL et al. An essential role for PICK1 in NMDA receptor-dependent bidirectional synaptic plasticity. Neuron 2008; 57: 872–882.

    Article  CAS  Google Scholar 

  25. Steinberg JP, Takamiya K, Shen Y, Xia J, Rubio ME, Yu S et al. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 2006; 49: 845–860.

    Article  CAS  Google Scholar 

  26. Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM et al. PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest 2009; 119: 802–812.

    Article  CAS  Google Scholar 

  27. Clem RL, Anggono V, Huganir RL . PICK1 regulates incorporation of calcium-permeable AMPA receptors during cortical synaptic strengthening. J Neurosci 2010; 30: 6360–6366.

    Article  CAS  Google Scholar 

  28. Atianjoh FE, Yaster M, Zhao X, Takamiya K, Xia J, Gauda EB et al. Spinal cord protein interacting with C kinase 1 is required for the maintenance of complete Freund's adjuvant-induced inflammatory pain but not for incision-induced post-operative pain. Pain 2010; 151: 226–234.

    Article  CAS  Google Scholar 

  29. Hu ZL, Huang C, Fu H, Jin Y, Wu WN, Xiong QJ et al. Disruption of PICK1 attenuates the function of ASICs and PKC regulation of ASICs. Am J Physiol Cell Physiol 2010; 299: C1355–C1362.

    Article  CAS  Google Scholar 

  30. Wang W, Petralia RS, Takamiya K, Xia J, Li YQ, Huganir RL et al. Preserved acute pain and impaired neuropathic pain in mice lacking protein interacting with C Kinase 1. Mol Pain 2011; 7: 11.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Anggono V, Clem RL, Huganir RL . PICK1 loss of function occludes homeostatic synaptic scaling. J Neurosci 2011; 31: 2188–2196.

    Article  CAS  Google Scholar 

  32. Volk L, Kim CH, Takamiya K, Yu Y, Huganir RL . Developmental regulation of protein interacting with C kinase 1 (PICK1) function in hippocampal synaptic plasticity and learning. Proc Natl Acad Sci USA 2010; 107: 21784–21789.

    Article  Google Scholar 

  33. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S et al. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 2007; 104: 14501–14506.

    Article  CAS  Google Scholar 

  34. Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H et al. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 2008; 13: 115.

    Article  CAS  Google Scholar 

  35. Ayhan Y, Abazyan B, Nomura J, Kim R, Ladenheim B, Krasnova IN et al. Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin of major psychiatric disorders. Mol Psychiatry 2010; 16: 293–306.

    Article  Google Scholar 

  36. Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F et al. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 2010; 68: 1172–1181.

    Article  CAS  Google Scholar 

  37. Ibi D, Nagai T, Koike H, Kitahara Y, Mizoguchi H, Niwa M et al. Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav Brain Res 2010; 206: 32–37.

    Article  CAS  Google Scholar 

  38. Nagai T, Kitahara Y, Ibi D, Nabeshima T, Sawa A, Yamada K . Effects of antipsychotics on the behavioral deficits in human dominant-negative DISC1 transgenic mice with neonatal polyI:C treatment. Behav Brain Res 2011; 225: 305–310.

    Article  CAS  Google Scholar 

  39. Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K et al. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 2010; 65: 480–489.

    Article  CAS  Google Scholar 

  40. Andreasson KI, Savonenko A, Vidensky S, Goellner JJ, Zhang Y, Shaffer A et al. Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci 2001; 21: 8198–8209.

    Article  CAS  Google Scholar 

  41. Tseng KY, O'Donnell P . Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 2004; 24: 5131–5139.

    Article  CAS  Google Scholar 

  42. Hashimoto K, Fujita Y, Horio M, Kunitachi S, Iyo M, Ferraris D et al. Co-administration of a D-amino acid oxidase inhibitor potentiates the efficacy of D-serine in attenuating prepulse inhibition deficits after administration of dizocilpine. Biol Psychiatry 2009; 65: 1103–1106.

    Article  CAS  Google Scholar 

  43. Braff DL, Geyer MA, Swerdlow NR . Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 2001; 156: 234–258.

    Article  CAS  Google Scholar 

  44. Wietrzych M, Meziane H, Sutter A, Ghyselinck N, Chapman PF, Chambon P et al. Working memory deficits in retinoid X receptor gamma-deficient mice. Learn Mem 2005; 12: 318–326.

    Article  Google Scholar 

  45. Meyer-Lindenberg A, Weinberger DR . Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006; 7: 818–827.

    Article  CAS  Google Scholar 

  46. Ma TM, Abazyan S, Abazyan B, Nomura J, Yang C, Seshadri S et al. Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 2012; 18: 557–567.

    Article  Google Scholar 

  47. Duffy S, Labrie V, Roder JC . D-serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learning. Neuropsychopharmacology 2008; 33: 1004–1018.

    Article  CAS  Google Scholar 

  48. Malkesman O, Austin DR, Tragon T, Wang G, Rompala G, Hamidi AB et al. Acute d-serine treatment produces antidepressant-like effects in rodents. Int J Neuropsychopharmacol 2012; 15: 1135–1148.

    Article  CAS  Google Scholar 

  49. Bado P, Madeira C, Vargas-Lopes C, Moulin TC, Wasilewska-Sampaio AP, Maretti L et al. Effects of low-dose D-serine on recognition and working memory in mice. Psychopharmacology (Berl) 2011; 218: 461–470.

    Article  CAS  Google Scholar 

  50. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  Google Scholar 

  51. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214.

    Article  CAS  Google Scholar 

  52. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R . Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 1959; 81: 363–369.

    Article  CAS  Google Scholar 

  53. Rosenbaum G, Cohen BD, Luby ED, Gottlieb JS, Yelen D . Comparison of sernyl with other drugs: simulation of schizophrenic performance with sernyl, LSD-25, and amobarbital (amytal) sodium; I. Attention, motor function, and proprioception. AMA Arch Gen Psychiatry 1959; 1: 651–656.

    Article  CAS  Google Scholar 

  54. O'Donnell P . Adolescent onset of cortical disinhibition in schizophrenia: insights from animal models. Schizophr Bull 2011; 37: 484–492.

    Article  Google Scholar 

  55. Sawa A . Cortical development and glutamatergic dysregulation in schizophrenia. Biol Psychiatry 2009; 66: 530–532.

    Article  Google Scholar 

  56. Deutsch SI, Burket JA, Katz E . Does subtle disturbance of neuronal migration contribute to schizophrenia and other neurodevelopmental disorders? Potential genetic mechanisms with possible treatment implications. Eur Neuropsychopharmacol 2010; 20: 281–287.

    Article  CAS  Google Scholar 

  57. Semba J, Tanaka N, Wakuta M, Suhara T . Neonatal phencyclidine treatment selectively attenuates mesolimbic dopamine function in adult rats as revealed by methamphetamine-induced behavior and c-fos mRNA expression in the brain. Synapse 2001; 40: 11–18.

    Article  CAS  Google Scholar 

  58. Harich S, Gross G, Bespalov A . Stimulation of the metabotropic glutamate 2/3 receptor attenuates social novelty discrimination deficits induced by neonatal phencyclidine treatment. Psychopharmacology (Berl) 2007; 192: 511–519.

    Article  CAS  Google Scholar 

  59. Nakatani-Pawlak A, Yamaguchi K, Tatsumi Y, Mizoguchi H, Yoneda Y . Neonatal phencyclidine treatment in mice induces behavioral, histological and neurochemical abnormalities in adulthood. Biol Pharm Bull 2009; 32: 1576–1583.

    Article  CAS  Google Scholar 

  60. Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L et al. Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 2009; 14: 719–727.

    Article  CAS  Google Scholar 

  61. Foltyn VN, Bendikov I, De Miranda J, Panizzutti R, Dumin E, Shleper M et al. Serine racemase modulates intracellular D-serine levels through an alpha,beta-elimination activity. J Biol Chem 2005; 280: 1754–1763.

    Article  CAS  Google Scholar 

  62. Detera-Wadleigh SD, McMahon FJ . G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol Psychiatry 2006; 60: 106–114.

    Article  CAS  Google Scholar 

  63. Hayden EP, Nurnberger JI . Molecular genetics of bipolar disorder. Genes Brain Behav 2006; 5: 85–95.

    Article  CAS  Google Scholar 

  64. Craddock N, O'Donovan MC, Owen MJ . Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull 2006; 32: 9–16.

    Article  Google Scholar 

  65. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  Google Scholar 

  66. Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H et al. A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophrenia Res 2007; 90: 41–51.

    Article  Google Scholar 

  67. Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindstrom LH, Iyo M . Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 767–769.

    Article  CAS  Google Scholar 

  68. Brouwer A, Luykx JJ, van Boxmeer L, Bakker SC, Kahn RS . NMDA-receptor coagonists in serum, plasma, and cerebrospinal fluid of schizophrenia patients: a meta-analysis of case-control studies. Neurosci Biobehav Rev 2013; 37: 1587–1596.

    Article  CAS  Google Scholar 

  69. Ozeki Y, Pickard BS, Kano S, Malloy MP, Zeledon M, Sun DQ et al. A novel balanced chromosomal translocation found in subjects with schizophrenia and schizotypal personality disorder: altered l-serine level associated with disruption of PSAT1 gene expression. Neurosci Res 2011; 69: 154–160.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Yukiko Lema for organizing the figures and manuscript. This work was supported by USPHS grants MH-084018 (AS), MH-094268 Silvo O Conte center (AS), MH-069853 (AS), MH-085226 (AS), MH-088753 (AS), MH-092443 (AS), MH-091387 (AS), MH-057683 (PO), MH-083728 (MP), Stanley (AS), RUSK (AS), S-R foundations (AS), NARSAD (AS, PO and MP), the Maryland Stem Cell Research Fund (AS), MEXT KAKENHI (TT), JST CREST (TT) and the Naito and Uehara Memorial Foundations (JN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P O'Donnell or A Sawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomura, J., Jaaro-Peled, H., Lewis, E. et al. Role for neonatal D-serine signaling: prevention of physiological and behavioral deficits in adult Pick1 knockout mice. Mol Psychiatry 21, 386–393 (2016). https://doi.org/10.1038/mp.2015.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.61

This article is cited by

Search

Quick links