Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CYP2D6 in the brain: genotype effects on resting brain perfusion

Abstract

The cytochrome P450 2D6 (CYP2D6) is a genetically polymorphic enzyme involved in the metabolism of several psychoactive drugs. Beside its expression in the liver, CYP2D6 is highly expressed in several regions of the brain, such as the hippocampus, thalamus, hypothalamus and the cortex, but its function in the brain is not well understood. The CYP2D6 enzyme may also have a physiological role due to its involvement in neurotransmitter biotransformation. In this study, CYP2D6 genotyping was performed in N=188 healthy individuals and compared with brain perfusion levels at rest, which may reflect an ongoing biological process regulating the reactivity of the individual to emotional stimuli and the detection of signals evoking fear. Relative to N=42 matched extensive metabolizers, N=14 poor metabolizers were associated with 15% higher perfusion levels in the thalamus (P=0.03 and 0.003). Effects were also present in the whole (N=188) sample divided into metabolizer groups, or finely graded into seven CYP2D6 activity levels. A weaker effect was observed in the right hippocampus (P=0.05). An exploratory analysis, extended to the whole brain, suggested the involvement of CYP2D6 in regions associated with alertness or serotonergic function. These findings support the hypothesis of a functional role of CYP2D6 in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Distlerath LM, Guengrich FP . Characterization of a human liver cytochrome P-450 involved in the oxidation of debrisoquine and other drugs by using antibodies raised to the analogous rat enzyme. Proc Natl Acad Sci USA 1984; 81: 7348–7352.

    Article  CAS  Google Scholar 

  2. Sachse C, Brockmöller J, Bauer S, Root I . Cytochrome P450 2D6 variants in a caucasian population: allele frequencies and phenotypic consequences. Am J Med Hum Genet 1997; 60: 284–295.

    CAS  Google Scholar 

  3. Siegle I, Fritz P, Eckhardt K, Zanger UM, Eichelbaum M . Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics 2001; 11: 237–245.

    Article  CAS  Google Scholar 

  4. Dorado P, Peñas-Lledó EM, Llerena A . CYP2D6 polymorphism: implications for antipsychotic drug response, schizophrenia and personality traits. Pharmacogenomics 2007; 8: 1597–1608.

    Article  CAS  Google Scholar 

  5. Hiroi T, Imaoka S, Funae Y . Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun 1998; 249: 838–843.

    Article  CAS  Google Scholar 

  6. Yu AM, Idle JR, Byrd LG, Krausz KW, Küpfer A, Gonzalez FJ . Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 2003; 13: 173–181.

    Article  CAS  Google Scholar 

  7. Zhu W . CYP2D6: A key enzyme in morphine synthesis in animals. Med Sci Monit 2008; 14: SC15–SC18.

    CAS  PubMed  Google Scholar 

  8. Snider NT, Sikora MJ, Sridar C, Feuerstein TJ, Rae JM, Hollenberg PF . The endocannabidoid anandamide is a substrate for the human polymorphic cytochrome P450 2D6. J Pharmacol Exp Ther 2008; 327: 538–545.

    Article  CAS  Google Scholar 

  9. Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF . Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem 2002; 82: 1376–1378.

    Article  CAS  Google Scholar 

  10. Mann A, Miksys S, Lee A, Mash DC, Tyndale RF . Induction of the drug metabolizing enzyme CYP2D6 in monkey brain by chronic nicotine treatment. Neuropharmacology 2008; 55: 1147–1155.

    Article  CAS  Google Scholar 

  11. Yue J, Miksys S, Hoffmann E, Tyndale RF . Chronic nicotine treatment induces rat CYP2D6 in the brain but not in the liver: An investigation of induction and time course. J Psychiatry Neurosci 2008; 33: 54–63.

    PubMed  PubMed Central  Google Scholar 

  12. Gan SH, Ismail R, Wan Adnan WA, Zulmi W, Kumaraswamy N, Larmie ET . Relationship between Type A and B personality and debrisoquine hydroxylation capacity. Br J Clin Pharmacol 2004; 57: 785–789.

    Article  CAS  Google Scholar 

  13. Roberts RL, Luty SE, Mulder RT, Joyce PR, Kennedy MA . Association between cytochrome P450 2D6 genotype and harm avoidance. Am J Med Genet B Neuropsychiatr Genet 2004; 127B: 90–93.

    Article  Google Scholar 

  14. Yasui-Furukori N, Kaneda A, Iwashima K, Saito M, Nakagami T, Tsuchimine S et al. Association between cytochrome P450 (CYP) 2C19 polymorphism and harm avoidance in Japanese. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 724–727.

    Article  CAS  Google Scholar 

  15. González I, Peñas-Lledó EM, Pérez B, Dorado P, Alvarey M, Llerena A . Relation between CYP2D6 phenotype and genotype and personality in healthy volunteers. Pharmacogenomics 2008; 9: 833–840.

    Article  Google Scholar 

  16. Llerena A, Edman G, Cobaleda J, Benítez J, Schallung D, Bertilsson L . Relationship between personality and debrisoquine hydroxylation capacity. Suggestion of an endogenous neuroactive substrate or product of the cytochrome P4502D6. Acta Psychiatr Scand 1993; 87: 23–28.

    Article  CAS  Google Scholar 

  17. Bijl MJ, Luijendijk HJ, van den Berg J, Visser LE, van Schaik RHN, Hofman A et al. Association between the CYP2D6*4 polymorphism and depression or anxiety in the elderly. Pharmacogenomics 2009; 10: 541–547.

    Article  CAS  Google Scholar 

  18. Kirchheiner J, Lang U, Stamm T, Sander T, Gallinat J . Association of CYP2D6 genotypes and personality traits in healthy individuals. J Clin Psychopharmacol 2006; 26: 440–442.

    Article  Google Scholar 

  19. Iwashima K, Yasui-Furukori N, Kaneda A, Saito M, Nakagami T, Sato Y et al. No association between CYP2D6 polymorphisms and personality trait in Japanese. Br J Clin Pharmacol 2007; 64: 96–99.

    Article  CAS  Google Scholar 

  20. Suzuki E, Kitao Y, Ono Y, Iijima Y, Inada T . Cytochrome P450 2D6 polymorphism and character traits. Psychiatr Genet 2003; 13: 111–113.

    PubMed  Google Scholar 

  21. Andreasen NC, O’Leary DS, Cizadlo T, Arnd S, Rezai K, Watkins GL et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am J Psychiatry 1995; 152: 1576–1585.

    Article  CAS  Google Scholar 

  22. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL . A default mode of brain function. Proc Natl Acad Sci USA 2001; 98: 676–682.

    Article  CAS  Google Scholar 

  23. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME et al. Common blood flow changes across visual tasks: II Decreases in cerebral cortex. J Cognitive Neurosci 1997; 9: 648–663.

    Article  CAS  Google Scholar 

  24. Raichle ME, Gusnard DA . Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol 2005; 493: 167–176.

    Article  Google Scholar 

  25. Coull JT . Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 1998; 55: 343–361.

    Article  CAS  Google Scholar 

  26. Maquet P . Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res 2000; 9: 207–231.

    Article  CAS  Google Scholar 

  27. Drevets WC . Neuroimaging studies of mood disorder. Biol Psychiatry 2000; 48: 813–829.

    Article  CAS  Google Scholar 

  28. Mayberg HS . Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am 2003; 13: 805–815.

    Article  Google Scholar 

  29. Davis M, Whalen PJ . The amygdala: vigilance and emotion. Mol Psychiatry 2001; 6: 13–34.

    Article  CAS  Google Scholar 

  30. Viviani R, Sim EJ, Lo H, Richter S, Haffer S, Osterfeld N et al. Components of variance in brain perfusion and the design of studies of individual differences: the baseline study. Neuroimage 2009; 46: 12–22.

    Article  Google Scholar 

  31. Abler B, Hofer C, Viviani R . Habitual emotion regulation strategies and baseline brain perfusion. Neuroreport 2008; 19: 21–24.

    Article  Google Scholar 

  32. Canli T, Qiu M, Omura K, Congdon E, Haas BW, Amin Z et al. Neural correlates of epigenesis. Proc Natl Acad Sci USA 2006; 103: 16033–16038.

    Article  CAS  Google Scholar 

  33. Rao H, Gillihan SJ, Wang J, Korczykowski M, Sankoorikal GMV, Kaercher KA et al. Genetic variation in serotonin transporter alters resting brain function in healthy individuals. Biol Psychiatry 2007; 62: 600–606.

    Article  CAS  Google Scholar 

  34. Wang J, Zhang Y, Wolf RL, Roc AC, Alsop DC, Detre JA . Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: Feasibility study. Radiology 2005; 235: 218–228.

    Article  Google Scholar 

  35. Heller T, Kirchheiner J, Armstrong VW, Luthe H, Tzvetkon M, Brockmöller J et al. AmpliChip CYP450 GeneChip: a new gene chip that allows rapid and accurate CYP2D6 genotyping. Ther Drug Monit 2006; 28: 673–677.

    Article  CAS  Google Scholar 

  36. Fuselli S, Dupanlop I, Frigato E, Cruciani F, Scozzari R, Moral P et al. Molecular diversity at the CYP2D6 locus in the Mediterranean region. Eur J Hum Genet 2004; 12: 916–924.

    Article  CAS  Google Scholar 

  37. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS . The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 2008; 83: 234–242.

    Article  CAS  Google Scholar 

  38. Wang J, Alsop DC, Li L, Listerud J, Gonzalez-At JB, Detre JA . Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003; 50: 599–607.

    Article  Google Scholar 

  39. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ . Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2: 189–210.

    Article  Google Scholar 

  40. Rubin DB . Matching to remove bias in observational studies. Biometrics 1973; 29: 159–184.

    Article  Google Scholar 

  41. Rosenbaum PR . Observational Studies. Springer: Berlin, 2002.

    Book  Google Scholar 

  42. Ho D, Imai K, King G, Stuart E . Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit Anal 2007; 15: 199–236.

    Article  Google Scholar 

  43. Imai K, King G, Stuart EA . Misunderstandings between experimentalists and observationalists about causal inference. J R Stat Soc A 2008; 171: 481–502.

    Article  Google Scholar 

  44. Hansen BB . Full matching in an observational study of coaching for the SAT. J Am Stat Assoc 2004; 99: 609–618.

    Article  Google Scholar 

  45. Aguirre GK, Zarahn E, D’Esposito M . The inferential impact of global signal covariates in functional neuroimaging analysis. Neuroimage 1998; 8: 302–306.

    Article  CAS  Google Scholar 

  46. Friston KJ, Frith CD, Liddle PF, Dolan RJ, Lammertsma AA, Frackowiak RSJ . The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 1990; 10: 458–466.

    Article  CAS  Google Scholar 

  47. Holmes AP, Blair RC, Watson JDG, Ford I . Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 1996; 16: 7–22.

    Article  CAS  Google Scholar 

  48. Nichols TE, Hayasaka S . Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res 2003; 12: 419–446.

    Article  Google Scholar 

  49. Viviani R, Sim EJ, Lo H, Beschoner P, Osterfeld N, Maier C et al. Baseline brain perfusion and the serotonin transporter promoter polymorphism. Biol Psychiatry 2010; 67: 317–322.

    Article  CAS  Google Scholar 

  50. Jones AKP, Brown WD, Friston KJ, Qi LY, Frackowiak RSJ . Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B 1991; 244: 39–44.

    Article  CAS  Google Scholar 

  51. Vogt BA, Gabriel M . The Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhauser: Boston, MA, USA, 1993.

    Book  Google Scholar 

  52. Ochsner KN, Ludlow DH, Knierim K, Hanelin J, Ramachandran T, Gloval GC et al. Neural correlates of individual differences in pain-related fear and anxiety. Pain 2006; 120: 69–77.

    Article  Google Scholar 

  53. Kinomura S, Larsson J, Gulyas B, Roland PE . Activation by attention of the human reticular formation and thalamic reticular nuclei. Science 1996; 271: 512–515.

    Article  CAS  Google Scholar 

  54. McCormick DA . Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 1992; 39: 337–338.

    Article  CAS  Google Scholar 

  55. Posner MI . Attention in cognitive neuroscience: An overview. In: Gazzaniga MS (ed). The Cognitive Neurosciences. MIT Press: Cambridge, MA, USA, 1995 pp 615–624.

    Google Scholar 

  56. Paus T, Zatorre R, Hofle N, Caramanos Z, Gotman J, Petrides M et al. Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cognitive Neurosci 1997; 9: 392–408.

    Article  CAS  Google Scholar 

  57. Gray JA, McNaughton N . The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septohippocampal System, 2nd ed Oxford University Press: Oxford, UK, 2000.

    Google Scholar 

  58. Bradford LD . CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–243.

    Article  CAS  Google Scholar 

  59. Arvidsson U, Riedl M, Chakrabarti S, Lee JH, Nakano AH, Dado RJ et al. Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 1995; 15: 3328–3341.

    Article  CAS  Google Scholar 

  60. Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H et al. Linearized reference tissue parametric imaging methods: Application to [11C]-DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 2003; 23: 1096–1112.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr JJ Wang from the Department of Radiology and Center for Functional Neuroimaging at University of Pennsylvania for granting us use of the continuous arterial spin labeling sequence and for providing the software for the estimation of the perfusion values. We also thank Dr Georg Grön of the Department of Psychiatry of the University of Ulm for help in obtaining and setting up the continuous arterial spin labeling sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kirchheiner.

Ethics declarations

Competing interests

Drs Kirchheiner and Seeringer report having received lecture fees from GSK, Servier and Eisai. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchheiner, J., Seeringer, A., Godoy, A. et al. CYP2D6 in the brain: genotype effects on resting brain perfusion. Mol Psychiatry 16, 333–341 (2011). https://doi.org/10.1038/mp.2010.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.42

Keywords

This article is cited by

Search

Quick links