Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplastic syndrome

Molecular characterization of EZH2 mutant patients with myelodysplastic/myeloproliferative neoplasms

Abstract

Mutations in the epigenetic regulator gene EZH2 are frequently observed in patients with myelodysplastic/myeloproliferative neoplasms (MDS/MPN; 10–13%) and are associated with a poor outcome. To gain more insight into EZH2 pathology, we sought to genetically characterize a cohort of 41 EZH2-mutated MDS/MPN patients using targeted deep next-generation sequencing (NGS), colony-forming progenitor assays and transcriptome analysis. Stable short hairpin RNA (shRNA)-mediated downregulation of EZH2 was performed in MDS-derived F-36P, MOLM-13 and OCI-M2 cells to study EZH2-specific changes. Targeted NGS revealed a complex pattern of mutations with a total of 190 individual mutations. EZH2 mutations frequently co-occur with TET2 (58%), RUNX1 (40%) and ASXL1 (34%) mutations. Colony assays indicated EZH2 mutations to be mostly early events in leukemogenesis and showed a complex mutational hierarchy. Gene expression data revealed a number of differently expressed genes between EZH2 wild-type and mutant patients including known EZH2 targets. Comparison of patient transcriptome to EZH2-downregulated cell line data revealed several genes as novel EZH2 targets, showing opposite as well as unidirectional regulation between cell lines and patients. Some genes, such as CXXC5, ETS1 and VAV3 have previously been implied to have a role in leukemogenesis. Their precise role in MDS/MPN needs to be further investigated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Shtivelman E, Lifshitz B, Gale RP, Canaani E . Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985; 315: 550–554.

    Article  CAS  Google Scholar 

  2. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  Google Scholar 

  3. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  Google Scholar 

  4. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  Google Scholar 

  5. Zoi K, Cross NC . Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int J Hematol 2015; 101: 229–242.

    Article  CAS  Google Scholar 

  6. Shih AH, Abdel-Wahab O, Patel JP, Levine RL . The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12: 599–612.

    Article  CAS  Google Scholar 

  7. Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet 2013; 45: 1232–1237.

    Article  CAS  Google Scholar 

  8. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64–69.

    Article  CAS  Google Scholar 

  9. Fathi AT, Abdel-Wahab O . Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy. Adv Hematol 2012; 2012: 469592.

    Article  Google Scholar 

  10. Kim KH, Roberts CW . Targeting EZH2 in cancer. Nat Med 2016; 22: 128–134.

    Article  CAS  Google Scholar 

  11. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  Google Scholar 

  12. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  Google Scholar 

  13. Schäfer V, Ernst J, Rinke J, Ziermann J, Winkelmann N, Hochhaus A et al. EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 2016; 142: 1641–1650.

    Article  Google Scholar 

  14. Rinke J, Schäfer V, Schmidt M, Ziermann J, Kohlmann A, Hochhaus A et al. Genotyping of 25 leukemia-associated genes in a single work flow by next-generation sequencing technology with low amounts of input template DNA. Clin Chem 2013; 59: 1238–1250.

    Article  CAS  Google Scholar 

  15. Schmidt M, Rinke J, Schäfer V, Schnittger S, Kohlmann A, Obstfelder E et al. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia 2014; 28: 2292–2299.

    Article  CAS  Google Scholar 

  16. Sauer H, Ruhe C, Müller JP, Schmelter M, D'Souza R, Wartenberg M . Reactive oxygen species and upregulation of NADPH oxidases in mechanotransduction of embryonic stem cells. Methods Mol Biol 2008; 477: 397–418.

    Article  CAS  Google Scholar 

  17. Rittirsch D, Schoenborn V, Lindig S, Wanner E, Sprengel K, Günkel S et al. An integrated clinico-transcriptomic approach identifies a central role of the heme degradation pathway for septic complications after trauma. Ann Surgery 2016; 264: 1125–1134.

    Article  Google Scholar 

  18. Zirm E, Spies-Weisshart B, Heidel F, Schnetzke U, Böhmer FD, Hochhaus A et al. Ponatinib may overcome resistance of FLT3-ITD harbouring additional point mutations, notably the previously refractory F691I mutation. Br J Haematol 2012; 157: 483–492.

    Article  CAS  Google Scholar 

  19. Khan SN, Jankowska AM, Mahfouz R, Dunbar AJ, Sugimoto Y, Hosono N et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 2013; 27: 1301–1309.

    Article  CAS  Google Scholar 

  20. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013; 122: 3616–3627.

    Article  CAS  Google Scholar 

  21. Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol 2012; 30: 3376–3382.

    Article  Google Scholar 

  22. Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D . Myeloid malignancies: mutations, models and management. BMC Cancer 2012; 12: 304.

    Article  CAS  Google Scholar 

  23. Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 2012; 22: 180–193.

    Article  CAS  Google Scholar 

  24. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C et al. Clonal architecture of chronic myelomonocytic leukemias. Blood 2013; 121: 2186–2198.

    Article  CAS  Google Scholar 

  25. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    Article  CAS  Google Scholar 

  26. Mason CC, Khorashad JS, Tantravahi SK, Kelley TW, Zabriskie MS, Yan D et al. Age-related mutations and chronic myelomonocytic leukemia. Leukemia 2016; 30: 906–913.

    Article  CAS  Google Scholar 

  27. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 2011; 118: 3932–3941.

    Article  CAS  Google Scholar 

  28. Kühnl A, Valk PJ, Sanders MA, Ivey A, Hills RK, Mills KI et al. Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia. Blood 2015; 125: 2985–2994.

    Article  Google Scholar 

  29. Seth A, Watson DK . ETS transcription factors and their emerging roles in human cancer. Eur J Cancer 2005; 41: 2462–2478.

    Article  CAS  Google Scholar 

  30. Collyn d'Hooghe M, Galiègue-Zouitina S, Szymiczek D, Lantoine D, Quief S, Loucheux-Lefebvre MH et al. Quantitative and qualitative variation of ETS-1 transcripts in hematologic malignancies. Leukemia 1993; 7: 1777–1785.

    CAS  PubMed  Google Scholar 

  31. Kerckaert JP, Duterque-Coquillaud M, Collyn-d'Hooghe M, Morel P, Majérus MA, Laï JL et al. Polymorphism of the proto-oncogene ETS-1 in hematological malignancies. Leukemia 1990; 4: 16–19.

    CAS  PubMed  Google Scholar 

  32. Nowak D, Le Toriellec E, Stern MH, Kawamata N, Akagi T, Dyer MJ et al. Molecular allelokaryotyping of T-cell prolymphocytic leukemia cells with high density single nucleotide polymorphism arrays identifies novel common genomic lesions and acquired uniparental disomy. Haematologica 2009; 94: 518–527.

    Article  CAS  Google Scholar 

  33. del Rey M, O'Hagan K, Dellett M, Aibar S, Colyer HA, Alonso ME et al. Genome-wide profiling of methylation identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes. Leukemia 2013; 27: 610–618.

    Article  CAS  Google Scholar 

  34. Goyama S, Schibler J, Gasilina A, Shrestha M, Lin S, Link KA et al. UBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETO. Leukemia 2016; 30: 728–739.

    Article  CAS  Google Scholar 

  35. Hobert O, Jallal B, Ullrich A . Interaction of Vav with ENX-1, a putative transcriptional regulator of homeobox gene expression. Mol Cell Biol 1996; 16: 3066–3073.

    Article  CAS  Google Scholar 

  36. Fujikawa K, Miletic AV, Alt FW, Faccio R, Brown T, Hoog J et al. Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. J Exp Med 2003; 198: 1595–1608.

    Article  CAS  Google Scholar 

  37. Chang KH, Sanchez-Aguilera A, Shen S, Sengupta A, Madhu MN, Ficker AM et al. Vav3 collaborates with p190-BCR-ABL in lymphoid progenitor leukemogenesis, proliferation, and survival. Blood 2012; 120: 800–811.

    Article  CAS  Google Scholar 

  38. Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439: 871–874, Erratum in: Nature 2007; 446 (7137): 824.

    Article  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Mrs Anja Waldau is gratefully acknowledged. The study was supported by the Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R15/20) and the Interdisziplinäres Zentrum für Klinische Forschung (IZKF, Jena, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Ernst.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rinke, J., Müller, J., Blaess, M. et al. Molecular characterization of EZH2 mutant patients with myelodysplastic/myeloproliferative neoplasms. Leukemia 31, 1936–1943 (2017). https://doi.org/10.1038/leu.2017.190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.190

This article is cited by

Search

Quick links