Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

PTPROt-mediated regulation of p53/Foxm1 suppresses leukemic phenotype in a CLL mouse model

Abstract

The gene encoding PTPROt (truncated isoform of protein tyrosine phosphatase receptor-type O) is methylated and suppressed in chronic lymphocytc leukemia (CLL). PTPROt exhibits in vitro tumor-suppressor characteristics through the regulation of B-cell receptor (BCR) signaling. Here we generated transgenic (Tg) mice with B-cell-specific expression of PTPROt. Although lymphocyte development is normal in these mice, crossing them with TCL1 Tg mouse model of CLL results in a survival advantage compared with the TCL1 Tg mice. Gene expression profiling of splenic B-lymphocytes before detectable signs of CLL followed by Ingenuity Pathway Analysis revealed that the most prominently regulated functions in TCL1 Tg vs non-transgenic (NTg) and TCL1 Tg vs PTPROt/TCL1 double Tg are the same and also biologically relevant to this study. Further, enhanced expression of the chemokine Ccl3, the oncogenic transcription factor Foxm1 and its targets in TCL1 Tg mice were significantly suppressed in the double Tg mice, suggesting a protective function of PTPROt against leukemogenesis. This study also showed that PTPROt-mediated regulation of Foxm1 involves activation of p53, a transcriptional repressor of Foxm1, which is facilitated through suppression of BCR signaling. These results establish the in vivo tumor-suppressive function of PTPROt and identify p53/Foxm1 axis as a key downstream effect of PTPROt-mediated suppression of BCR signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wiggins RC, Wiggins JE, Goyal M, Wharram BL, Thomas PE . Molecular cloning of cDNAs encoding human GLEPP1, a membrane protein tyrosine phosphatase: characterization of the GLEPP1 protein distribution in human kidney and assignment of the GLEPP1 gene to human chromosome 12p12-p13. Genomics 1995; 27: 174–181.

    Article  CAS  PubMed  Google Scholar 

  2. Wharram BL, Goyal M, Gillespie PJ, Wiggins JE, Kershaw DB, Holzman LB et al. Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. J Clin Invest 2000; 106: 1281–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beltran PJ, Bixby JL, Masters BA . Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol 2003; 456: 384–395.

    Article  CAS  PubMed  Google Scholar 

  4. Aguiar RC, Yakushijin Y, Kharbanda S, Tiwari S, Freeman GJ, Shipp MA . PTPROt: an alternatively spliced and developmentally regulated B-lymphoid phosphatase that promotes G0/G1 arrest. Blood 1999; 94: 2403–2413.

    CAS  PubMed  Google Scholar 

  5. Hsu SH, Motiwala T, Roy S, Claus R, Mustafa M, Plass C et al. Methylation of the PTPRO gene in human hepatocellular carcinoma and identification of VCP as its substrate. J Cell Biochem 2013; 114: 1810–1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramaswamy B, Majumder S, Roy S, Ghoshal K, Kutay H, Datta J et al. Estrogen-mediated suppression of the gene encoding protein tyrosine phosphatase PTPRO in human breast cancer: mechanism and role in tamoxifen sensitivity. Mol Endocrinol 2009; 23: 176–187.

    Article  CAS  PubMed  Google Scholar 

  7. Motiwala T, Majumder S, Kutay H, Smith DS, Neuberg DS, Lucas DM et al. Methylation and silencing of protein tyrosine phosphatase receptor type O in chronic lymphocytic leukemia. Clin Cancer Res 2007; 13: 3174–3181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Motiwala T, Kutay H, Ghoshal K, Bai S, Seimiya H, Tsuruo T et al. Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc Natl Acad Sci USA 2004; 101: 13844–13849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Motiwala T, Ghoshal K, Das A, Majumder S, Weichenhan D, Wu YZ et al. Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene 2003; 22: 6319–6331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jacob ST, Motiwala T . Epigenetic regulation of protein tyrosine phosphatases: potential molecular targets for cancer therapy. Cancer Gene Ther 2005; 12: 665–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Motiwala T, Majumder S, Ghoshal K, Kutay H, Datta J, Roy S et al. PTPROt inactivates the oncogenic fusion protein BCR/ABL and suppresses transformation of K562 cells. J Biol Chem 2009; 284: 455–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shintani T, Ihara M, Sakuta H, Takahashi H, Watakabe I, Noda M . Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Nat Neurosci 2006; 9: 761–769.

    Article  CAS  PubMed  Google Scholar 

  13. Chen L, Juszczynski P, Takeyama K, Aguiar RC, Shipp MA . Protein tyrosine phosphatase receptor-type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell-receptor signaling, and cellular proliferation. Blood 2006; 108: 3428–3433.

    Article  CAS  PubMed  Google Scholar 

  14. Motiwala T, Datta J, Kutay H, Roy S, Jacob ST . Lyn kinase and ZAP70 are substrates of PTPROt in B-cells: Lyn inactivation by PTPROt sensitizes leukemia cells to VEGF-R inhibitor pazopanib. J Cell Biochem 2010; 110: 846–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang YT, Li FF, Ke C, Li Z, Li ZT, Zou XF et al. PTPRO promoter methylation is predictive of poorer outcome for HER2-positive breast cancer: indication for personalized therapy. J Transl Med 2013; 11: 245.

    Article  PubMed  PubMed Central  Google Scholar 

  16. You YJ, Chen YP, Zheng XX, Meltzer SJ, Zhang H . Aberrant methylation of the PTPRO gene in peripheral blood as a potential biomarker in esophageal squamous cell carcinoma patients. Cancer Lett 2012; 315: 138–144.

    Article  CAS  PubMed  Google Scholar 

  17. American Cancer Society: Cancer Facts and Figures. American Cancer Society, 2012. Available at http://www.cancer.org/research/cancerfactsstatistics/.

  18. Motiwala T, Zanesi N, Datta J, Roy S, Kutay H, Checovich AM et al. AP-1 elements and TCL1 protein regulate expression of the gene encoding protein tyrosine phosphatase PTPROt in leukemia. Blood 2011; 118: 6132–6140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pekarsky Y, Zanesi N, Croce CM . Molecular basis of CLL. Semin Cancer Biol 2010; 20: 370–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zanesi N, Balatti V, Bottoni A, Croce CM, Pekarsky Y . Novel insights in molecular mechanisms of CLL. Curr Pharm Des 2012; 18: 3363–3372.

    Article  CAS  PubMed  Google Scholar 

  21. Herling M, Patel KA, Khalili J, Schlette E, Kobayashi R, Medeiros LJ et al. TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia 2006; 20: 280–285.

    Article  CAS  PubMed  Google Scholar 

  22. Zanesi N, Aqeilan R, Drusco A, Kaou M, Sevignani C, Costinean S et al. Effect of rapamycin on mouse chronic lymphocytic leukemia and the development of nonhematopoietic malignancies in Emu-TCL1 transgenic mice. Cancer Res 2006; 66: 915–920.

    Article  CAS  PubMed  Google Scholar 

  23. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  25. Lefebvre C, Rajbhandari P, Alvarez MJ, Bandaru P, Lim WK, Sato M et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol Syst Biol 2010; 6: 377.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Enzler T, Kater AP, Zhang W, Widhopf GF 2nd, Chuang HY, Lee J et al. Chronic lymphocytic leukemia of Emu-TCL1 transgenic mice undergoes rapid cell turnover that can be offset by extrinsic CD257 to accelerate disease progression. Blood 2009; 114: 4469–4476.

    Article  CAS  PubMed  Google Scholar 

  27. Burger JA, Quiroga MP, Hartmann E, Burkle A, Wierda WG, Keating MJ et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 2009; 113: 3050–3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sivina M, Hartmann E, Kipps TJ, Rassenti L, Krupnik D, Lerner S et al. CCL3 (MIP-1alpha) plasma levels and the risk for disease progression in chronic lymphocytic leukemia. Blood 2011; 117: 1662–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barsotti AM, Prives C . Pro-proliferative FoxM1 is a target of p53-mediated repression. Oncogene 2009; 28: 4295–4305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Millour J, de Olano N, Horimoto Y, Monteiro LJ, Langer JK, Aligue R et al. ATM and p53 regulate FOXM1 expression via E2F in breast cancer epirubicin treatment and resistance. Mol Cancer Ther 2011; 10: 1046–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dai C, Gu W . p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 2010; 16: 528–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schall TJ, Bacon K, Camp RD, Kaspari JW, Goeddel DV . Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med 1993; 177: 1821–1826.

    Article  CAS  PubMed  Google Scholar 

  33. Bagnara D, Kaufman MS, Calissano C, Marsilio S, Patten PE, Simone R et al. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood 2011; 117: 5463–5472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Chen G, Feng L, Zhang W, Pelicano H, Wang F et al. Loss of p53 and altered miR15-a/16-1short right arrowMCL-1 pathway in CLL: insights from TCL1-Tg:p53(−/−) mouse model and primary human leukemia cells. Leukemia 2014; 28: 118–128.

    Article  CAS  PubMed  Google Scholar 

  35. Zenz T, Krober A, Scherer K, Habe S, Buhler A, Benner A et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 2008; 112: 3322–3329.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Ohio State University Comprehensive Cancer Center Microarray, Analytical Cytometry and Genetically Engineered Mouse Modeling Shared Resources for technical assistance. We thank Kalpana Ghoshal, Sarmila Majumder and Jharna Datta for valuable discussions; Satavisha Roy for experimental assistance; and Alexey Efanov for help with flow cytometry. This work was supported, in part, by the NIH grants CA101956 and CA086978 from the National Cancer Institute (to STJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Motiwala or S T Jacob.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motiwala, T., Kutay, H., Zanesi, N. et al. PTPROt-mediated regulation of p53/Foxm1 suppresses leukemic phenotype in a CLL mouse model. Leukemia 29, 1350–1359 (2015). https://doi.org/10.1038/leu.2014.341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.341

This article is cited by

Search

Quick links