Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Phenotypic identification of subclones in multiple myeloma with different chemoresistant, cytogenetic and clonogenic potential

Subjects

Abstract

Knowledge about clonal diversity and selection is critical to understand multiple myeloma (MM) pathogenesis, chemoresistance and progression. If targeted therapy becomes reality, identification and monitoring of intraclonal plasma cell (PC) heterogeneity would become increasingly demanded. Here we investigated the kinetics of intraclonal heterogeneity among 116 MM patients using 23-marker multidimensional flow cytometry (MFC) and principal component analysis, at diagnosis and during minimal residual disease (MRD) monitoring. Distinct phenotypic subclones were observed in 35/116 (30%) newly diagnosed MM patients. In 10/35 patients, persistent MRD was detected after 9 induction cycles, and longitudinal comparison of patient-paired diagnostic vs MRD samples unraveled phenotypic clonal tiding after therapy in half (5/10) of the patients. After demonstrating selection of distinct phenotypic subsets by therapeutic pressure, we investigated whether distinct fluorescence-activated cell-sorted PC subclones had different clonogenic and cytogenetic profiles. In half (5/10) of the patients analyzed, distinct phenotypic subclones showed different clonogenic potential when co-cultured with stromal cells, and in 6/11 cases distinct phenotypic subclones displayed unique cytogenetic profiles by interphase fluorescence in situ hybridization, including selective del(17p13). Collectively, we unravel potential therapeutic selection of preexisting diagnostic phenotypic subclones during MRD monitoring; because phenotypically distinct PCs may show different clonogenic and cytogenetic profiles, identification and follow-up of unique phenotypic-genetic myeloma PC subclones may become relevant for tailored therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mateos MV, San Miguel JF . How should we treat newly diagnosed multiple myeloma patients? Hematology Am Soc Hematol Educ Program 2013; 2013: 488–495.

    Article  PubMed  Google Scholar 

  2. McCarthy PL, Hahn T . Strategies for induction, autologous hematopoietic stem cell transplantation, consolidation, and maintenance for transplantation-eligible multiple myeloma patients. Hematology Am Soc Hematol Educ Program 2013; 2013: 496–503.

    Article  PubMed  Google Scholar 

  3. Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia 2014; 28: 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  4. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Comun 2014; 5: 2997.

    Article  Google Scholar 

  5. Egan JB, Shi CX, Tembe W, Christoforides A, Kurdoglu A, Sinari S et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood 2012; 120: 1060–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E et al. Clonal competition with alternating dominance in multiple myeloma. Blood 2012; 120: 1067–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Melchor L, Brioli A, Wardell CP, Murison A, Potter NE, Kaiser MF et al. Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 2014; 28: 384–390.

    Article  PubMed  Google Scholar 

  8. Walker BA, Wardell CP, Melchor L, Brioli A, Johnson DC, Kaiser MF et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia 2014; 28: 384–390.

    Article  PubMed  Google Scholar 

  9. Walker BA, Wardell CP, Melchor L, Hulkki S, Potter NE, Johnson DC et al. Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood 2012; 120: 1077–1086.

    Article  CAS  PubMed  Google Scholar 

  10. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 2014; 25: 91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Magrangeas F, Avet-Loiseau H, Gouraud W, Lode L, Decaux O, Godmer P et al. Minor clone provides a reservoir for relapse in multiple myeloma. Leukemia 2013; 27: 473–481.

    Article  CAS  PubMed  Google Scholar 

  12. Paiva B, Vidriales MB, Rosinol L, Martinez-Lopez J, Mateos MV, Ocio EM et al. A multiparameter flow cytometry immunophenotypic algorithm for the identification of newly diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control. Leukemia 2013; 27: 2056–2061.

    Article  CAS  PubMed  Google Scholar 

  13. van Dongen JJ, Lhermitte L, Bottcher S, Almeida J, van der Velden VH, Flores-Montero J et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; 26: 1908–1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalina T, Flores-Montero J, van der Velden VH, Martin-Ayuso M, Bottcher S, Ritgen M et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012; 26: 1986–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pedreira CE, Costa ES, Lecrevisse Q, van Dongen JJ, Orfao A . Overview of clinical flow cytometry data analysis: recent advances and future challenges. Trends Biotechnol 2013; 31: 415–425.

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez C, Santos-Silva MC, Lopez A, Matarraz S, Jara-Acevedo M, Ciudad J et al. Newly diagnosed adult AML and MPAL patients frequently show clonal residual hematopoiesis. Leukemia 2013; 27: 2149–2156.

    Article  CAS  PubMed  Google Scholar 

  17. Gutierrez NC, Castellanos MV, Martin ML, Mateos MV, Hernandez JM, Fernandez M et al. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 2007; 21: 143–150.

    Article  CAS  PubMed  Google Scholar 

  18. Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007; 109: 2276–2284.

    Article  CAS  PubMed  Google Scholar 

  19. Bergsagel PL, Mateos MV, Gutierrez NC, Rajkumar SV, San Miguel JF . Improving overall survival and overcoming adverse prognosis in the treatment of cytogenetically high-risk multiple myeloma. Blood 2013; 121: 884–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brioli A, Melchor L, Cavo M, Morgan GJ . The impact of intra-clonal heterogeneity on the treatment of multiple myeloma. Br J Haematol 2014; 165: 441–454.

    Article  PubMed  Google Scholar 

  21. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471: 467–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brioli A, Giles H, Pawlyn C, Campbell JP, Kaiser MF, Melchor L et al. Serum free light chain evaluation as a marker for the impact of intra-clonal heterogeneity on the progression and treatment resistance in multiple myeloma. Blood 2014; 123: 3414–3419.

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt-Hieber M, Gutierrez ML, Perez-Andres M, Paiva B, Rasillo A, Tabernero MD et al. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells. Haematologica 2013; 98: 279–287.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mateo G, Castellanos M, Rasillo A, Gutierrez NC, Montalban MA, Martin ML et al. Genetic abnormalities and patterns of antigenic expression in multiple myeloma. Clin Cancer Res 2005; 11: 3661–3667.

    Article  CAS  PubMed  Google Scholar 

  25. Mateo G, Montalban MA, Vidriales MB, Lahuerta JJ, Mateos MV, Gutierrez N et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol 2008; 26: 2737–2744.

    Article  PubMed  Google Scholar 

  26. Schmidt-Hieber M, Perez-Andres M, Paiva B, Flores-Montero J, Perez JJ, Gutierrez NC et al. CD117 expression in gammopathies is associated with an altered maturation of the myeloid and lymphoid hematopoietic cell compartments and favorable disease features. Haematologica 2011; 96: 328–332.

    Article  PubMed  Google Scholar 

  27. Rasillo A, Tabernero MD, Sanchez ML, Perez de Andres M, Martin Ayuso M, Hernandez J et al. Fluorescence in situ hybridization analysis of aneuploidization patterns in monoclonal gammopathy of undetermined significance versus multiple myeloma and plasma cell leukemia. Cancer 2003; 97: 601–609.

    Article  PubMed  Google Scholar 

  28. Bataille R, Jego G, Robillard N, Barille-Nion S, Harousseau JL, Moreau P et al. The phenotype of normal, reactive and malignant plasma cells. Identification of ‘many and multiple myelomas’ and of new targets for myeloma therapy. Haematologica 2006; 91: 1234–1240.

    CAS  PubMed  Google Scholar 

  29. Chaidos A, Barnes CP, Cowan G, May PC, Melo V, Hatjiharissi E et al. Clinical drug resistance linked to interconvertible phenotypic and functional states of tumor-propagating cells in multiple myeloma. Blood 2013; 121: 318–328.

    Article  CAS  PubMed  Google Scholar 

  30. Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK, Reece DE et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 2013; 24: 289–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Visvader JE, Lindeman GJ . Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755–768.

    Article  CAS  PubMed  Google Scholar 

  32. Paiva B, Paino T, Sayagues JM, Garayoa M, San-Segundo L, Martin M et al. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood 2013; 122: 3591–3598.

    Article  CAS  PubMed  Google Scholar 

  33. Hosen N, Matsuoka Y, Kishida S, Nakata J, Mizutani Y, Hasegawa K et al. CD138-negative clonogenic cells are plasma cells but not B cells in some multiple myeloma patients. Leukemia 2012; 26: 2135–2141.

    Article  CAS  PubMed  Google Scholar 

  34. Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Fama R et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014; 123: 2139–2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Avet-Loiseau H, Leleu X, Roussel M, Moreau P, Guerin-Charbonnel C, Caillot D et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol 2010; 28: 4630–4634.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cooperative Research Thematic Network (RTICC) RD12/0036/0048, RD12/0036/0058, RD12/0036/0046, RD12/0036/0069 and G03/136, Instituto de Salud Carlos III/ Subdirección General de Investigación Sanitaria (FIS: PI060339; 06/1354; 02/0905; 01/0089/01-02; PS09/01897/01370; Sara Borrell: CD13/00340; Miguel Servet: CP13/00080) and Consejería de Sanidad, Junta de Castilla y León, Valladolid, Spain (HUS396A12-1), Asociación Española Contra el Cáncer (AECC; GCB120981SAN), Spain. The study was also supported internationally by the International Myeloma Foundation (IMF) Junior Grant Proposal and the Multiple Myeloma Research Foundation (MMRF) research fellow award.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J F San-Miguel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paíno, T., Paiva, B., Sayagués, J. et al. Phenotypic identification of subclones in multiple myeloma with different chemoresistant, cytogenetic and clonogenic potential. Leukemia 29, 1186–1194 (2015). https://doi.org/10.1038/leu.2014.321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.321

This article is cited by

Search

Quick links