Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

Dominant-negative Ikaros cooperates with BCR-ABL1 to induce human acute myeloid leukemia in xenografts

Abstract

Historically, our understanding of mechanisms underlying human leukemogenesis are inferred from genetically engineered mouse models. Relatively, few models that use primary human cells recapitulate the full leukemic transformation as assayed in xenografts and myeloid transformation is infrequent. We report a humanized experimental leukemia model where xenografts develop aggressive acute myeloid leukemia (AML) with disseminated myeloid sarcomas within 4 weeks following transplantation of cord blood transduced with vectors expressing BCR-ABL1 and a dominant-negative isoform of IKAROS, Ik6. Ik6 induced transcriptional programs in BCR-ABL1-transduced progenitors that contained repressed B-cell progenitor programs, along with strong stemness, proliferation and granulocyte–monocytic progenitor (GMP) signatures—a novel combination not induced in control groups. Thus, wild-type IKAROS restrains stemness properties and has tumor suppressor activity in BCR-ABL1-initiated leukemia. Although IKAROS mutations/deletions are common in lymphoid transformation, they are found also at low frequency in AML that progress from a prior myeloproliferative neoplasm (MPN) state. Our experimental system provides an excellent model to gain insight into these rare cases of AML transformation and the properties conferred by IKAROS loss of function as a secondary mutation. More generally, our data points to the importance of deregulated stemness/lineage commitment programs in human myeloid leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 2010; 70: 447–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klampfl T, Harutyunyan A, Berg T, Gisslinger B, Schalling M, Bagienski K et al. Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 2011; 118: 167–176.

    Article  CAS  PubMed  Google Scholar 

  3. Sokal JE . Evaluation of survival data for chronic myelocytic leukemia. Am J Hematol 1976; 1: 493–500.

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D . The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986; 233: 212–214.

    Article  CAS  PubMed  Google Scholar 

  5. Calabretta B, Perrotti D . The biology of CML blast crisis. Blood 2004; 103: 4010–4022.

    Article  CAS  PubMed  Google Scholar 

  6. Grossmann V, Kohlmann A, Zenger M, Schindela S, Eder C, Weissmann S et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia 2011; 25: 557–560.

    Article  CAS  PubMed  Google Scholar 

  7. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    Article  CAS  PubMed  Google Scholar 

  8. Rizo A, Horton SJ, Olthof S, Dontje B, Ausema A, van Os R et al. BMI1 collaborates with BCR-ABL in leukemic transformation of human CD34+ cells. Blood 2010; 116: 4621–4630.

    Article  CAS  PubMed  Google Scholar 

  9. Chalandon Y, Jiang X, Christ O, Loutet S, Thanopoulou E, Eaves A et al. BCR-ABL-transduced human cord blood cells produce abnormal populations in immunodeficient mice. Leukemia 2005; 19: 442–448.

    Article  CAS  PubMed  Google Scholar 

  10. Kennedy JA, Barabe F . Investigating human leukemogenesis: from cell lines to in vivo models of human leukemia. Leukemia 2008; 22: 2029–2040.

    Article  CAS  PubMed  Google Scholar 

  11. Iacobucci I, Storlazzi CT, Cilloni D, Lonetti A, Ottaviani E, Soverini S et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 2009; 114: 2159–2167.

    Article  CAS  PubMed  Google Scholar 

  12. Jager R, Gisslinger H, Passamonti F, Rumi E, Berg T, Gisslinger B et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 2010; 24: 1290–1298.

    Article  CAS  PubMed  Google Scholar 

  13. Cazzaniga G, van Delft FW, Lo Nigro L, Ford AM, Score J, Iacobucci I et al. Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia. Blood 2011; 118: 5559–5564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun L, Liu A, Georgopoulos K . Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 1996; 15: 5358–5369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nacheva EP, Grace CD, Brazma D, Gancheva K, Howard-Reeves J, Rai L et al. Does BCR/ABL1 positive acute myeloid leukaemia exist? Br J Haematol 2013; 161: 541–550.

    Article  CAS  PubMed  Google Scholar 

  16. Klug CA, Morrison SJ, Masek M, Hahm K, Smale ST, Weissman IL . Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in immature lymphocytes. Proc Natl Acad Sci USA 1998; 95: 657–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360: 470–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iacobucci I, Iraci N, Messina M, Lonetti A, Chiaretti S, Valli E et al. IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic leukemia. PLoS One 2012; 7: e40934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Virely C, Moulin S, Cobaleda C, Lasgi C, Alberdi A, Soulier J et al. Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia. Leukemia 2010; 24: 1200–1204.

    Article  CAS  PubMed  Google Scholar 

  20. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  21. Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 2011; 8: 511–524.

    Article  CAS  PubMed  Google Scholar 

  22. Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA . Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 2010; 304: 2706–2715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Winandy S, Wu P, Georgopoulos K . A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 1995; 83: 289–299.

    Article  CAS  PubMed  Google Scholar 

  24. Schjerven H, McLaughlin J, Arenzana TL, Frietze S, Cheng D, Wadsworth SE et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol 2013; 14: 1073–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guenechea G, Gan OI, Dorrell C, Dick JE . Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2001; 2: 75–82.

    Article  CAS  PubMed  Google Scholar 

  26. Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, Dick JE . Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol 2010; 11: 585–593.

    Article  CAS  PubMed  Google Scholar 

  27. Wang JC, Warner JK, Erdmann N, Lansdorp PM, Harrington L, Dick JE . Dissociation of telomerase activity and telomere length maintenance in primitive human hematopoietic cells. Proc Natl Acad Sci USA 2005; 102: 14398–14403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chung KY, Morrone G, Schuringa JJ, Plasilova M, Shieh JH, Zhang Y et al. Enforced expression of NUP98-HOXA9 in human CD34(+) cells enhances stem cell proliferation. Cancer Res 2006; 66: 11781–11791.

    Article  CAS  PubMed  Google Scholar 

  29. Barabe F, Kennedy JA, Hope KJ, Dick JE . Modeling the initiation and progression of human acute leukemia in mice. Science 2007; 316: 600–604.

    Article  CAS  PubMed  Google Scholar 

  30. Kennedy JA, Barabe F, Patterson BJ, Bayani J, Squire JA, Barber DL et al. Expression of TEL-JAK2 in primary human hematopoietic cells drives erythropoietin-independent erythropoiesis and induces myelofibrosis in vivo. Proc Natl Acad Sci USA 2006; 103: 16930–16935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Merico D, Isserlin R, Stueker O, Emili A, Bader GD . Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 2010; 5: e13984.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T . Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011; 27: 431–432.

    Article  CAS  PubMed  Google Scholar 

  34. Laurenti E, Doulatov S, Zandi S, Plumb I, Chen J, April C et al. The transcriptional architecture of human hematopoiesis reveals novel regulators governing lymphoid commitment. Nat Immunol 2013; 14: 756–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chalandon Y, Jiang X, Hazlewood G, Loutet S, Conneally E, Eaves A et al. Modulation of p210(BCR-ABL) activity in transduced primary human hematopoietic cells controls lineage programming. Blood 2002; 99: 3197–3204.

    Article  CAS  PubMed  Google Scholar 

  36. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues, Vol. 2. IARC: Lyon, France, 2008, pp 1–439.

  37. Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med 2013; 19: 1513–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 2010; 24: 1785–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ng SY, Yoshida T, Zhang J, Georgopoulos K . Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 2009; 30: 493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Panteli KE, Hatzimichael EC, Bouranta PK, Katsaraki A, Seferiadis K, Stebbing J et al. Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases. Br J Haematol 2005; 130: 709–715.

    Article  CAS  PubMed  Google Scholar 

  41. Chen W, Kumar AR, Hudson WA, Li Q, Wu B, Staggs RA et al. Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell. 2008; 13: 432–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  43. Yagi T, Hibi S, Takanashi M, Kano G, Tabata Y, Imamura T et al. High frequency of Ikaros isoform 6 expression in acute myelomonocytic and monocytic leukemias: implications for up-regulation of the antiapoptotic protein Bcl-XL in leukemogenesis. Blood 2002; 99: 1350–1355.

    Article  CAS  PubMed  Google Scholar 

  44. Minami Y, Stuart SA, Ikawa T, Jiang Y, Banno A, Hunton IC et al. BCR-ABL-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci USA 2008; 105: 17967–17972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoshida T, Ng SY, Georgopoulos K . Awakening lineage potential by Ikaros-mediated transcriptional priming. Curr Opin Immunol 2010; 22: 154–160.

    Article  CAS  PubMed  Google Scholar 

  48. Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 2011; 20: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Bashir (PMH and OICR) for statistical analyses, Goce Bogdanoski for phospho-flow analysis and Olga I. Gan for technical assistance. This work was supported by funds to JED from: The Princess Margaret Cancer Centre Foundation, Ontario Institute for Cancer Research with funding from the Province of Ontario, Canadian Institutes for Health Research, Canadian Cancer Society Research Institute, Terry Fox Foundation, Genome Canada through the Ontario Genomics Institute and a Canada Research Chair. Funding was also provided by the Swiss Cancer League and the Swiss National Science Foundation (APAT, EL), Roche (EL) and FSBMB (EL). This research was funded in part by the Ontario Ministry of Health and Long Term Care (OMOHLTC). The views expressed do not necessarily reflect those of the OMOHLTC.

Author contributions

APAT and SMD performed research, analyzed data and wrote the paper; FN, and P-YC, performed research; JSY performed research and analyzed data; EL analyzed data and edited the paper; VV and ET analyzed data; CJG, MDM and CGM provided essential reagents; JED designed research, analyzed data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Dick.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theocharides, A., Dobson, S., Laurenti, E. et al. Dominant-negative Ikaros cooperates with BCR-ABL1 to induce human acute myeloid leukemia in xenografts. Leukemia 29, 177–187 (2015). https://doi.org/10.1038/leu.2014.150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.150

This article is cited by

Search

Quick links