Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Induced differentiation of acute myeloid leukemia cells by activation of retinoid X and liver X receptors

Abstract

Use of all-trans retinoic acid (ATRA) as a differentiation agent has been limited to acute promyelocytic leukemia (APL) as non-APL leukemias are insensitive to ATRA. We recently demonstrated that the rexinoid, bexarotene, induces differentiation and therapeutic responses in patients with refractory AML. Rexinoids bind and activate retinoid X receptors (RXRs); however, rexinoids alone are incapable of activating retinoic acid receptor (RAR)/RXR complexes, suggesting that myeloid differentiation can occur independent of RAR. In this study, we demonstrate that rexinoid differentiation of AML cells is RAR independent and requires the expression of PU.1. Because of the promiscuousness of RXR with other nuclear receptors, myeloid differentiation by bexarotene with other nuclear receptor ligands was explored. Bexarotene cooperated with ATRA to enhance differentiation in some AML cell lines; however, the combination of bexarotene with the PPARĪ³ agonist rosiglitazone did not. In contrast, bexarotene combined with liver X receptor (LXR) agonists, T0901317 or GW3965, induced potent differentiation and cytotoxicity in AML cell lines and primary human AML cells, but not in normal progenitor cells. These results suggest that RXR/LXR-regulated gene expression in normal cells is deregulated in AML cells and identifies a potential role for these agonists in differentiation therapy of non-APLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ablain J, de The H . Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood 2011; 117: 5795ā€“5802.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Alcalay M, Zangrilli D, Pandolfi PP, Longo L, Mencarelli A, angelo G et al. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor {alpha} locus. Proc Natl Acad Sci USA 1991; 88: 1977ā€“1981.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Juliusson G, Karlsson K, Lazarevic V, Wahlin A, Brune M, Antunovic P et al. Hematopoietic stem cell transplantation rates and long-term survival in acute myeloid and lymphoblastic leukemia: real-world population-based data from the Swedish Acute Leukemia Registry 1997ā€“2006. Cancer 2011; 117: 4238ā€“4246.

    ArticleĀ  Google ScholarĀ 

  4. Tsai DE, Luger SM, Andreadis C, Vogl DT, Kemner A, Potuzak M et al. A phase I study of bexarotene, a retinoic X receptor agonist, in non-M3 acute myeloid leukemia. Clin Cancer Res 2008; 14: 5619ā€“5625.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Aranda A, Pascual A . Nuclear hormone receptors and gene expression. Physiol Rev 2001; 81: 1269ā€“1304.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Kizaki M, Dawson MI, Heyman R, Elster E, Morosetti R, Pakkala S et al. Effects of novel retinoid X receptor-selective ligands on myeloid leukemia differentiation and proliferation in vitro. Blood 1996; 87: 1977ā€“1984.

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Altucci L, Rossin A, Hirsch O, Nebbioso A, Vitoux D, Wilhelm E et al. Rexinoid-triggered differentiation and tumor-selective apoptosis of acute myeloid leukemia by protein kinase A-mediated desubordination of retinoid X receptor. Cancer Res 2005; 65: 8754ā€“8765.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, Asou N et al. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood 2006; 107: 3330ā€“3338.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004; 36: 624ā€“630.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 2003; 101: 270ā€“277.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2003; 101: 2074.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, Singh H et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 2003; 4: 1029ā€“1036.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Walsh JC, DeKoter RP, Lee HJ, Smith ED, Lancki DW, Gurish MF et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 2002; 17: 665ā€“676.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(āˆ’Delta Delta C(T)) method. Methods (San Diego, CA 2001; 25: 402ā€“408.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Chen Q, Ross AC . Retinoic acid regulates cell cycle progression and cell differentiation in human monocytic THP-1 cells. Exp Cell Res 2004; 297: 68ā€“81.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Iijima K, Honma Y, Niitsu N . Granulocytic differentiation of leukemic cells with t(9;11)(p22;q23) induced by all-trans-retinoic acid. Leuk Lymphoma 2004; 45: 1017ā€“1024.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Tagliafico E, Tenedini E, Manfredini R, Grande A, Ferrari F, Roncaglia E et al. Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia. Leukemia 2006; 20: 1751ā€“1758.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Howell SR, Shirley MA, Grese TA, Neel DA, Wells KE, Ulm EH . Bexarotene metabolism in rat, dog, and human, synthesis of oxidative metabolites, and in vitro activity at retinoid receptors. Drug Metab Dispos 2001; 29: 990ā€“998.

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Perez E, Bourguet W, Gronemeyer H, de Lera AR . Modulation of RXR function through ligand design. Biochim Biophys Acta 2011; 1821: 57ā€“69.

    ArticleĀ  Google ScholarĀ 

  20. Shiohara M, Dawson MI, Hobbs PD, Sawai N, Higuchi T, Koike K et al. Effects of novel RAR- and RXR-selective retinoids on myeloid leukemic proliferation and differentiation in vitro. Blood 1999; 93: 2057ā€“2066.

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. van de Merbel NC, van Veen JH, Wilkens G, Loewen G . Validated liquid chromatographic method for the determination of bexarotene in human plasma. Chromatogr 2002; 775: 189ā€“195.

    CASĀ  Google ScholarĀ 

  22. Kizaki M, Ueno H, Matsushita H, Takayama N, Muto A, Awaya N et al. Retinoid resistance in leukemic cells. Leuk Lymphoma 1997; 25: 427ā€“434.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Park DJ, Chumakov AM, Vuong PT, Chih DY, Gombart AF, Miller WH Jr et al. CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment. J Clin invest 1999; 103: 1399ā€“1408.

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Lekstrom-Himes JA . The role of C/EBP(epsilon) in the terminal stages of granulocyte differentiation. Stem cells (Dayton, OH) 2001; 19: 125ā€“133.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Friedman AD . Transcriptional control of granulocyte and monocyte development. Oncogene 2007; 26: 6816ā€“6828.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Yoshida H, Ichikawa H, Tagata Y, Katsumoto T, Ohnishi K, Akao Y et al. PML-retinoic acid receptor alpha inhibits PML IV enhancement of PU.1-induced C/EBPepsilon expression in myeloid differentiation. Mol Cell Biol 2007; 27: 5819ā€“5834.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Kueh HY, Rothenberg EV . Regulatory gene network circuits underlying T cell development from multipotent progenitors. Wiley Interdiscip Rev Syst Biol Med 2011; 4: 79ā€“102.

    ArticleĀ  Google ScholarĀ 

  28. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 2011; 144: 296ā€“309.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Konopleva M, Elstner E, McQueen TJ, Tsao T, Sudarikov A, Hu W et al. Peroxisome proliferator-activated receptor gamma and retinoid X receptor ligands are potent inducers of differentiation and apoptosis in leukemias. Mol Cancer Ther 2004; 3: 1249ā€“1262.

    CASĀ  PubMedĀ  Google ScholarĀ 

  30. Kohro T, Nakajima T, Wada Y, Sugiyama A, Ishii M, Tsutsumi S et al. Genomic structure and mapping of human orphan receptor LXR alpha: upregulation of LXRa mRNA during monocyte to macrophage differentiation. J Atheroscl Thromb 2000; 7: 145ā€“151.

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Peeters SD, van der Kolk DM, de Haan G, Bystrykh L, Kuipers F, de Vries EG et al. Selective expression of cholesterol metabolism genes in normal CD34+CD38āˆ’ cells with a heterogeneous expression pattern in AML cells. Exp Hemat 2006; 34: 622ā€“630.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Kumar N, Solt LA, Conkright JJ, Wang Y, Istrate MA, Busby SA et al. The benzenesulfoamide T0901317 [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluorometh yl)ethyl]phenyl]-benzenesulfonamide] is a novel retinoic acid receptor-related orphan receptor-alpha/gamma inverse agonist. Mol Pharmacol 2010; 77: 228ā€“236.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Solt LA, Kumar N, Nuhant P, Wang Y, Lauer JL, Liu J et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 2011; 472: 491ā€“494.

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Collins SJ . The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 2002; 16: 1896ā€“1905.

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Gallagher RE . Retinoic acid resistance in acute promyelocytic leukemia. Leukemia 2002; 16: 1940ā€“1958.

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Kastner P, Lawrence HJ, Waltzinger C, Ghyselinck NB, Chambon P, Chan S . Positive and negative regulation of granulopoiesis by endogenous RARalpha. Blood 2001; 97: 1314ā€“1320.

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Ricote M, Snyder CS, Leung HY, Chen J, Chien KR, Glass CK . Normal hematopoiesis after conditional targeting of RXRalpha in murine hematopoietic stem/progenitor cells. J Leuk Biol 2006; 80: 850ā€“861.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Durual S, Rideau A, Ruault-Jungblut S, Cossali D, Beris P, Piguet V et al. Lentiviral PU.1 overexpression restores differentiation in myeloid leukemic blasts. Leukemia 2007; 21: 1050ā€“1059.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Szanto A, Nagy L . Retinoids potentiate peroxisome proliferator-activated receptor gamma action in differentiation, gene expression, and lipid metabolic processes in developing myeloid cells. Mol Pharmacol 2005; 67: 1935ā€“1943.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM . Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93: 229ā€“240.

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM . PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241ā€“252.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 2010; 328: 1689ā€“1693.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank the Stem Cell and Xenograft Core, the Human Immunology Core (Philadelphia, PA, USA), the Flow Cytometry Core, the Bioinformatics Core at the Perelman School of Medicine, UPENN Cancer Center and the Carroll lab for advice and assistance. This study was supported by K01-CA-129151 (PVS), 1R01CA149566 (MC), the Perelman School of Medicine at the University of Pennsylvania and the US Veterans Administration (MC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P V Sanchez.

Ethics declarations

Competing interests

MC receives research support from Glaxo Smith Kline, Sanofi Aventis Corporation and Tetralogic Pharmaceuticals.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez, P., Glantz, S., Scotland, S. et al. Induced differentiation of acute myeloid leukemia cells by activation of retinoid X and liver X receptors. Leukemia 28, 749ā€“760 (2014). https://doi.org/10.1038/leu.2013.202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.202

Keywords

This article is cited by

Search

Quick links