Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Leukemia-initiating cell activity requires calcineurin in T-cell acute lymphoblastic leukemia

Abstract

Despite their initial efficient response to induction chemotherapy, relapse remains frequent in patients with T-cell acute lymphoblastic leukemia (T-ALL), an aggressive malignancy of immature T-cell progenitors. We previously reported sustained calcineurin (Cn) activation in human lymphoid malignancies, and showed that Cn inhibitors have antileukemic effects in mouse models of T-ALL. It was unclear, however, from these studies whether these effects resulted from Cn inhibition in leukemic cells themselves or were an indirect consequence of impaired Cn function in the supportive tumor microenvironment. We thus generated a Notch (intracellular Notch 1, ICN1)-induced T-ALL mouse model, in which conditional Cn genetic deletion is restricted to leukemic cells. Ex vivo, Cn deletion altered the adhesive interactions between leukemic cells and their supportive stroma, leukemic cell survival, proliferation, migration and clonogenic potential. In vivo, Cn activation was found to be critical for leukemia initiating/propagating cell activity as demonstrated by the failure of Cn-deficient leukemic cells to transplant the disease to syngeneic recipient mice. Importantly, combination of vincristine treatment with Cre-mediated Cn ablation cooperated to induce long-term remission of ICN1-induced T-ALL. These findings indicate that Cn is a promising target in T-ALL relapse prevention, and call for clinical trials incorporating Cn inhibitors during consolidation therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bassan R, Hoelzer D . Modern therapy of acute lymphoblastic leukemia. J Clin Oncol 2011; 29: 532–543.

    Article  Google Scholar 

  2. Pui CH, Carroll WL, Meshinchi S, Arceci RJ . Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011; 29: 551–565.

    Article  Google Scholar 

  3. Aifantis I, Raetz E, Buonamici S . Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8: 380–390.

    Article  CAS  Google Scholar 

  4. Meijerink JP . Genetic rearrangements in relation to immunophenotype and outcome in T-cell acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2010; 23: 307–318.

    Article  CAS  Google Scholar 

  5. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  Google Scholar 

  6. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  7. Lane SW, Scadden DT, Gilliland DG . The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009; 114: 1150–1157.

    Article  CAS  Google Scholar 

  8. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 2011; 43: 932–939.

    Article  CAS  Google Scholar 

  9. Silva A, Laranjeira AB, Martins LR, Cardoso BA, Demengeot J, Yunes JA et al. IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias. Cancer Res 2011; 71: 4780–4789.

    Article  CAS  Google Scholar 

  10. Barata JT, Silva A, Brandao JG, Nadler LM, Cardoso AA, Boussiotis VA . Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med 2004; 200: 659–669.

    Article  CAS  Google Scholar 

  11. Wu H, Peisley A, Graef IA, Crabtree GR . NFAT signaling and the invention of vertebrates. Trends Cell Biol 2007; 17: 251–260.

    Article  CAS  Google Scholar 

  12. Muller MR, NFAT Rao A . Immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 2010; 10: 645–656.

    Article  Google Scholar 

  13. Neilson JR, Winslow MM, Hur EM, Crabtree GR . Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 2004; 20: 255–266.

    Article  CAS  Google Scholar 

  14. Marafioti T, Pozzobon M, Hansmann ML, Ventura R, Pileri SA, Roberton H et al. The NFATc1 transcription factor is widely expressed in white cells and translocates from the cytoplasm to the nucleus in a subset of human lymphomas. Br J Haematol 2005; 128: 333–342.

    Article  CAS  Google Scholar 

  15. Pham LV, Tamayo AT, Yoshimura LC, Lin-Lee YC, Ford RJ . Constitutive NF-kappaB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood 2005; 106: 3940–3947.

    Article  CAS  Google Scholar 

  16. Medyouf H, Alcalde H, Berthier C, Guillemin MC, dos Santos NR, Janin A et al. Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nat Med 2007; 13: 736–741.

    Article  CAS  Google Scholar 

  17. Akimzhanov A, Krenacs L, Schlegel T, Klein-Hessling S, Bagdi E, Stelkovics E et al. Epigenetic changes and suppression of the nuclear factor of activated T cell 1 (NFATC1) promoter in human lymphomas with defects in immunoreceptor signaling. Am J Pathol 2008; 172: 215–224.

    Article  CAS  Google Scholar 

  18. Gachet S, Ghysdael J . Calcineurin/NFAT signaling in lymphoid malignancies. Gen Physiol Biophys 2009; 28, Spec No Focus F47–F54.

    Article  Google Scholar 

  19. Kiani A, Rao A, Aramburu J . Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 2000; 12: 359–372.

    Article  CAS  Google Scholar 

  20. Seibler J, Zevnik B, Kuter-Luks B, Andreas S, Kern H, Hennek T et al. Rapid generation of inducible mouse mutants. Nucleic Acids Res 2003; 31: e12.

    Article  Google Scholar 

  21. Aster JC, Xu L, Karnell FG, Patriub V, Pui JC, Pear WS . Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol Cell Biol 2000; 20: 7505–7515.

    Article  CAS  Google Scholar 

  22. Yashiro-Ohtani Y, He Y, Ohtani T, Jones ME, Shestova O, Xu L et al. Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A. Genes Dev 2009; 23: 1665–1676.

    Article  CAS  Google Scholar 

  23. Duy C, Hurtz C, Shojaee S, Cerchietti L, Geng H, Swaminathan S et al. BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature 2011; 473: 384–388.

    Article  CAS  Google Scholar 

  24. Gerby B, Clappier E, Armstrong F, Deswarte C, Calvo J, Poglio S et al. Expression of CD34 and CD7 on human T-cell acute lymphoblastic leukemia discriminates functionally heterogeneous cell populations. Leukemia 2011; 25: 1249–1258.

    Article  CAS  Google Scholar 

  25. Suzuki J, Fujita J, Taniguchi S, Sugimoto K, Mori KJ . Characterization of murine hemopoietic-supportive (MS-1 and MS-5) and non-supportive (MS-K) cell lines. Leukemia 1992; 6: 452–458.

    CAS  PubMed  Google Scholar 

  26. Winter SS, Sweatman J, Shuster JJ, Link MP, Amylon MD, Pullen J et al. Bone marrow stroma-supported culture of T-lineage acute lymphoblastic leukemic cells predicts treatment outcome in children: a Pediatric Oncology Group study. Leukemia 2002; 16: 1121–1126.

    Article  CAS  Google Scholar 

  27. Armstrong F, Brunet de la Grange P, Gerby B, Calvo J, Ballerini P, Pflumio F . NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood 2009; 113: 1730–1740.

    Article  CAS  Google Scholar 

  28. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183: 2283–2291.

    Article  CAS  Google Scholar 

  29. Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 2012; 18: 298–301.

    Article  CAS  Google Scholar 

  30. Schmidt-Supprian M, Rajewsky K . Vagaries of conditional gene targeting. Nat Immunol 2007; 8: 665–668.

    Article  CAS  Google Scholar 

  31. Lane SW, Wang YJ, Lo Celso C, Ragu C, Bullinger L, Sykes SM et al. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood 2011; 118: 2849–2856.

    Article  CAS  Google Scholar 

  32. Juarez JG, Thien M, Dela Pena A, Baraz R, Bradstock KF, Bendall LJ . CXCR4 mediates the homing of B cell progenitor acute lymphoblastic leukaemia cells to the bone marrow via activation of p38MAPK. Br J Haematol 2009; 145: 491–499.

    Article  CAS  Google Scholar 

  33. Sipkins DA, Wei X, Wu JW, Runnels JM, Côté D, Means TK et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435: 969–973.

    Article  CAS  Google Scholar 

  34. Davies C, Hogarth LA, Dietrich PA, Bachmann PS, Mackenzie KL, Hall AG et al. p53-independent epigenetic repression of the p21(WAF1) gene in T-cell acute lymphoblastic leukemia. J Biol Chem 2011; 286: 37639–37650.

    Article  CAS  Google Scholar 

  35. Rajpal A, Cho YA, Yelent B, Koza-Taylor PH, Li D, Chen E et al. Transcriptional activation of known and novel apoptotic pathways by Nur77 orphan steroid receptor. Embo J 2003; 22: 6526–6536.

    Article  CAS  Google Scholar 

  36. Thompson J, Winoto A . During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain. J Exp Med 2008; 205: 1029–1036.

    Article  CAS  Google Scholar 

  37. Clappier E, Gerby B, Sigaux F, Delord M, Touzri F, Hernandez L et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J Exp Med 2011; 208: 653–661.

    Article  CAS  Google Scholar 

  38. Dick JE . Stem cell concepts renew cancer research. Blood 2008; 112: 4793–4807.

    Article  CAS  Google Scholar 

  39. Ehninger A, Trumpp A . The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move. in. J Exp Med 2011; 208: 421–428.

    Article  CAS  Google Scholar 

  40. Mercier FE, Ragu C, Scadden DT . The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 2011; 12: 49–60.

    Article  Google Scholar 

  41. Campese AF, Garbe AI, Zhang F, Grassi F, Screpanti I, von Boehmer H . Notch1-dependent lymphomagenesis is assisted by but does not essentially require pre-TCR signaling. Blood 2006; 108: 305–310.

    Article  CAS  Google Scholar 

  42. dos Santos NR, Rickman DS, de Reynies A, Cormier F, Williame M, Blanchard C et al. Pre-TCR expression cooperates with TEL-JAK2 to transform immature thymocytes and induce T-cell leukemia. Blood 2007; 109: 3972–3981.

    Article  CAS  Google Scholar 

  43. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315–1321.

    Article  CAS  Google Scholar 

  44. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA . Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 2008; 322: 1861–1865.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G Crabtree for the generous gift of CnB1fl/Δ mice, W Pear for ICN1 retroviral, C da Costa for assistance in vincristine experiments, Z Maciorowski for assistance in cell sorting, F Cordelières for assistance in cell migration analyses, C Thibault and P de la Grange for assistance in transcriptomic analyses, Y Bourgeois, N Mebirouk, J Ropers for assistance with mouse husbandry, J Soulier for discussions and C Tran Quang for critical reading of the manuscript. SG was supported by predoctoral fellowships from the Ministère de l’Education Nationale et de la Recherche and Ligue Nationale Contre le Cancer; EG was supported by funds from the Agence Nationale de la Recherche (ANR) and Institut National du Cancer (INCa); DP was supported by a predoctoral fellowship from the Région Ile-de-France and Fondation ARC pour la recherche sur le cancer; MI was supported by postdoctoral fellowships from Institut Curie and Fondation pour la Recherche Médicale; CC was supported by postdoctoral fellowships from the Association for International Cancer Research (AICR) and Fondation de France; SP was supported by INCa. This work was supported by funds from the Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Curie, CEA, Ligue Nationale Contre le Cancer (JG an FP are Equipes Labelisées la Ligue), INCa, Fondation de France, ANR and AICR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Ghysdael.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gachet, S., Genescà, E., Passaro, D. et al. Leukemia-initiating cell activity requires calcineurin in T-cell acute lymphoblastic leukemia. Leukemia 27, 2289–2300 (2013). https://doi.org/10.1038/leu.2013.156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.156

Keywords

This article is cited by

Search

Quick links