Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Contributions of the RhoGEF activity of p210 BCR/ABL to disease progression

Abstract

We have previously identified a tyrosine kinase-independent, guanine nucleotide exchange factor (GEF) activity, which is contained within the region of p210 no expansion BCR/ABL that distinguishes it from p190 BCR/ABL. In the current study, we have compared the transforming activity of p190 BCR/ABL, p210 BCR/ABL and a mutant that lacks GEF activity (p210 BCR/ABL(S509A)). In cell-based, ex vivo, and murine bone marrow transplantation (BMT) assays the transforming activity of p210 BCR/ABL(S509A) mimics p190 BCR/ABL, and is distinct from p210 BCR/ABL. Thus, in the BMT assay, the p190 BCR/ABL- and p210 BCR/ABL(S509A)-transplanted mice exhibit a more rapid onset of disease than mice transplanted with p210 BCR/ABL. The reduced disease latency is associated with erythroid hyperplasia in the absence of anemia, and expansion of the megakaryocyte-erythrocyte progenitor (MEP), common myeloid progenitor (CMP) and granulocyte-macrophage progenitor (GMP) populations, producing a phenotype that is similar to acute myeloid leukemia (AML-M6). The disease phenotype is readily transplantable into secondary recipients. This is consistent with ex vivo clonogenicity assays, where p210 BCR/ABL preferentially supports the growth of colony forming unit (CFU)–granulocyte-macrophage (GM), whereas p190 BCR/ABL and the mutant preferentially support the growth of burst forming unit-erythroid (BFU-E). These results suggest that the GEF activity that distinguishes p210 BCR/ABL from p190 BCR/ABL actively regulates disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Melo JV . The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 1996; 88: 2375–2384.

    CAS  PubMed  Google Scholar 

  2. Sawyers CL . Chronic myeloid leukemia. N Engl J Med 1999; 340: 1330–1340.

    Article  CAS  PubMed  Google Scholar 

  3. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 1996; 88: 2410–2414.

    CAS  PubMed  Google Scholar 

  4. Muller AJ, Young JC, Pendergast AM, Pondel M, Landau NR, Littman DR et al. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol Cell Biol 1991; 11: 1785–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McWhirter JR, Galasso DL, Wang JY . A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993; 13: 7587–7595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maru Y, Afar DE, Witte ON, Shibuya M . The dimerization property of glutathione S-transferase partially reactivates Bcr-Abl lacking the oligomerization domain. J Biol Chem 1996; 271: 15353–15357.

    Article  CAS  PubMed  Google Scholar 

  7. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–185.

    Article  CAS  PubMed  Google Scholar 

  8. Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON . BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 1991; 66: 161–171.

    Article  CAS  PubMed  Google Scholar 

  9. Demehri S, O'Hare T, Eide CA, Smith CA, Tyner JW, Druker BJ et al. The function of the pleckstrin homology domain in BCR-ABL-mediated leukemogenesis. Leukemia 2009; 24: 226–229.

    Article  PubMed  Google Scholar 

  10. Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA . The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  12. Whitehead IP, Campbell S, Rossman KL, Der CJ . Dbl family proteins. Biochim Biophys Acta 1997; 1332: F1–23.

    CAS  PubMed  Google Scholar 

  13. Daubon T, Chasseriau J, Ali AE, Rivet J, Kitzis A, Constantin B et al. Differential motility of p190bcr-abl- and p210bcr-abl-expressing cells: respective roles of Vav and Bcr-Abl GEFs. Oncogene 2008; 27: 2673–2685.

    Article  CAS  PubMed  Google Scholar 

  14. Sahay S, Pannucci NL, Mahon GM, Rodriguez PL, Megjugorac NJ, Kostenko EV et al. The RhoGEF domain of p210 Bcr-Abl activates RhoA and is required for transformation. Oncogene 2008; 27: 2064–2071.

    Article  CAS  PubMed  Google Scholar 

  15. Harnois T, Constantin B, Rioux A, Grenioux E, Kitzis A, Bourmeyster N . Differential interaction and activation of Rho family GTPases by p210bcr-abl and p190bcr-abl. Oncogene 2003; 22: 6445–6454.

    Article  CAS  PubMed  Google Scholar 

  16. Kelliher M, Knott A, McLaughlin J, Witte ON, Rosenberg N . Differences in oncogenic potency but not target cell specificity distinguish the two forms of the BCR/ABL oncogene. Mol Cell Biol 1991; 11: 4710–4716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  18. Olabisi OO, Mahon GM, Kostenko EV, Liu Z, Ozer HL, Whitehead IP . Bcr interacts with components of the endosomal sorting complex required for transport-I and is required for epidermal growth factor receptor turnover. Cancer Res 2006; 66: 6250–6257.

    Article  CAS  PubMed  Google Scholar 

  19. Korus M, Mahon GM, Cheng L, Whitehead IP . p38 MAPK-mediated activation of NF-kappaB by the RhoGEF domain of Bcr. Oncogene 2002; 21: 4601–4612.

    Article  CAS  PubMed  Google Scholar 

  20. Thomas EK, Cancelas JA, Chae HD, Cox AD, Keller PJ, Perrotti D et al. Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell 2007; 12: 467–478.

    Article  CAS  PubMed  Google Scholar 

  21. Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA . Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 1996; 2: 876–882.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Ren R . Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92: 3829–3840.

    CAS  PubMed  Google Scholar 

  23. Hazlehurst LA, Bewry NN, Nair RR, Pinilla-Ibarz J . Signaling networks associated with BCR-ABL-dependent transformation. Cancer Control 2009; 16: 100–107.

    Article  PubMed  Google Scholar 

  24. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    Article  CAS  PubMed  Google Scholar 

  25. Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E et al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3' kinase pathway. Oncogene 1996; 12: 839–846.

    CAS  PubMed  Google Scholar 

  26. Gesbert F, Griffin JD . Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 2000; 96: 2269–2276.

    CAS  PubMed  Google Scholar 

  27. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD . STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 2000; 95: 2118–2125.

    CAS  PubMed  Google Scholar 

  28. Gallagher ED, Gutowski S, Sternweis PC, Cobb MH . RhoA binds to the amino terminus of MEKK1 and regulates its kinase activity. J Biol Chem 2004; 279: 1872–1877.

    Article  CAS  PubMed  Google Scholar 

  29. Kobayashi K, Takahashi M, Matsushita N, Miyazaki J, Koike M, Yaginuma H et al. Survival of developing motor neurons mediated by Rho GTPase signaling pathway through Rho-kinase. J Neurosci 2004; 24: 3480–3488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoshida T, Clark MF, Stern PH . The small GTPase RhoA is crucial for MC3T3-E1 osteoblastic cell survival. J Cell Biochem 2009; 106: 896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu S, Korzh V, Gong Z, Low BC . RhoA prevents apoptosis during zebrafish embryogenesis through activation of Mek/Erk pathway. Oncogene 2008; 27: 1580–1589.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang S, Zhou X, Lang RA, Guo F . RhoA of the Rho family small GTPases is essential for B lymphocyte development. PloS one 7: e33773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burthem J, Rees-Unwin K, Mottram R, Adams J, Lucas GS, Spooncer E et al. The rho-kinase inhibitors Y-27632 and fasudil act synergistically with imatinib to inhibit the expansion of ex vivo CD34(+) CML progenitor cells. Leukemia 2007; 21: 1708–1714.

    Article  CAS  PubMed  Google Scholar 

  34. Pompetti F, Spadano A, Sau A, Mennucci A, Russo R, Catinella V et al. Long-term remission in BCR/ABL-positive AML-M6 patient treated with Imatinib Mesylate. Leuk Res 2007; 31: 563–567.

    Article  CAS  PubMed  Google Scholar 

  35. Soupir CP, Vergilio JA, Dal Cin P, Muzikansky A, Kantarjian H, Jones D et al. Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol 2007; 127: 642–650.

    Article  PubMed  Google Scholar 

  36. Morgan GJ, Wiedemann LM, Chan LC, Price CM, Kanfer EJ, Galton DA . A case of M-BCR-rearranged, Philadelphia-positive AML that relapsed as chronic phase CML. Blood 1990; 75: 317–318.

    CAS  PubMed  Google Scholar 

  37. Price CM, Rassool F, Shivji MK, Gow J, Tew CJ, Haworth C et al. Rearrangement of the breakpoint cluster region and expression of P210 BCR-ABL in a "masked" Philadelphia chromosome-positive acute myeloid leukemia. Blood 1988; 72: 1829–1832.

    CAS  PubMed  Google Scholar 

  38. Sharma P, Dhingra KK, Roy S, Singh T . An acute myeloid leukemia M6b blast crisis with giant proerythroblasts in chronic myeloid leukemia. J Pediatr Hematol Oncol 2009; 31: 220–221.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service grants CA097066 (IPW) and DK62757 (DAW). NIH grants CA097066 (IPW) and DK62757 (DAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I P Whitehead.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tala, I., Chen, R., Hu, T. et al. Contributions of the RhoGEF activity of p210 BCR/ABL to disease progression. Leukemia 27, 1080–1089 (2013). https://doi.org/10.1038/leu.2012.351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.351

Keywords

This article is cited by

Search

Quick links