Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differentiation

Notch induces human T-cell receptor γδ+ thymocytes to differentiate along a parallel, highly proliferative and bipotent CD4 CD8 double-positive pathway

Abstract

In wild-type mice, T-cell receptor (TCR) γδ+ cells differentiate along a CD4 CD8 double-negative (DN) pathway whereas TCRαβ+ cells differentiate along the double-positive (DP) pathway. In the human postnatal thymus (PNT), DN, DP and single-positive (SP) TCRγδ+ populations are present. Here, the precursor–progeny relationship of the various PNT TCRγδ+ populations was studied and the role of the DP TCRγδ+ population during T-cell differentiation was elucidated. We demonstrate that human TCRγδ+ cells differentiate along two pathways downstream from an immature CD1+ DN TCRγδ+ precursor: a Notch-independent DN pathway generating mature DN and CD8αα SP TCRγδ+ cells, and a Notch-dependent, highly proliferative DP pathway generating immature CD4 SP and subsequently DP TCRγδ+ populations. DP TCRγδ+ cells are actively rearranging the TCRα locus, and differentiate to TCR DP cells, to CD8αβ SP TCRγδ+ cells and to TCRαβ+ cells. Finally, we show that the γδ subset of T-cell acute lymphoblastic leukemias (T-ALL) consists mainly of CD4 SP or DP phenotypes carrying significantly more activating Notch mutations than DN T-ALL. The latter suggests that activating Notch mutations in TCRγδ+ thymocytes induce proliferation and differentiation along the DP pathway in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Eberl G, Littman DR . Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells. Science 2004; 305: 248–251.

    Article  CAS  PubMed  Google Scholar 

  2. Kreslavsky T, Gleimer M, Garbe AI, von Boehmer H . Alphabeta versus gammadelta fate choice: counting the T-cell lineages at the branch point. Immunol Rev 2010; 238: 169–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kreslavsky T, von Boehmer H . Gammadelta TCR ligands and lineage commitment. Semin Immunol 2010; 22: 214–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kang J, Fehling HJ, Laplace C, Malissen M, Cado D, Raulet DH . T cell receptor gamma gene regulatory sequences prevent the function of a novel TCRgamma/pTalpha pre-T cell receptor. Immunity 1998; 8: 713–721.

    Article  CAS  PubMed  Google Scholar 

  5. Kang J, Coles M, Cado D, Raulet DH . The developmental fate of T cells is critically influenced by TCRgammadelta expression. Immunity 1998; 8: 427–438.

    Article  CAS  PubMed  Google Scholar 

  6. Lauritsen JP, Wong GW, Lee SY, Lefebvre JM, Ciofani M, Rhodes M et al. Marked induction of the helix-loop-helix protein Id3 promotes the gammadelta T cell fate and renders their functional maturation Notch independent. Immunity 2009; 31: 565–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hayes SM, Li L, Love PE . TCR signal strength influences alphabeta/gammadelta lineage fate. Immunity 2005; 22: 583–593.

    Article  CAS  PubMed  Google Scholar 

  8. Garbe AI, Krueger A, Gounari F, Zuniga-Pflucker JC, von Boehmer H . Differential synergy of Notch and T cell receptor signaling determines alphabeta versus gammadelta lineage fate. J Exp Med 2006; 203: 1579–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haks MC, Lefebvre JM, Lauritsen JP, Carleton M, Rhodes M, Miyazaki T et al. Attenuation of gammadeltaTCR signaling efficiently diverts thymocytes to the alphabeta lineage. Immunity 2005; 22: 595–606.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson A, Pircher H, Ohashi P, MacDonald HR . Analysis of immature (CD4-CD8-) thymic subsets in T-cell receptor alpha beta transgenic mice. Dev Immunol 1992; 2: 85–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Washburn T, Schweighoffer E, Gridley T, Chang D, Fowlkes BJ, Cado D et al. Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 1997; 88: 833–843.

    Article  CAS  PubMed  Google Scholar 

  12. Kreslavsky T, Garbe AI, Krueger A, von Boehmer H . T cell receptor-instructed alphabeta versus gammadelta lineage commitment revealed by single-cell analysis. J Exp Med 2008; 205: 1173–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Offner F, Van Beneden K, Debacker V, Vanhecke D, Vandekerckhove B, Plum J et al. Phenotypic and functional maturation of TCR gammadelta cells in the human thymus. J Immunol 1997; 158: 4634–4641.

    CAS  PubMed  Google Scholar 

  14. Matos DM, Rizzatti EG, Fernandes M, Buccheri V, Falcao RP . Gammadelta and alphabeta T-cell acute lymphoblastic leukemia: comparison of their clinical and immunophenotypic features. Haematologica 2005; 90: 264–266.

    PubMed  Google Scholar 

  15. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  16. Langerak AW, Wolvers-Tettero IL, van den Beemd MW, van Wering ER, Ludwig WD, Hahlen K et al. Immunophenotypic and immunogenotypic characteristics of TCRgammadelta+ T cell acute lymphoblastic leukemia. Leukemia 1999; 13: 206–214.

    Article  CAS  PubMed  Google Scholar 

  17. Taghon T, De Smedt M, Stolz F, Cnockaert M, Plum J, Leclercq G . Enforced expression of GATA-3 severely reduces human thymic cellularity. J Immunol 2001; 167: 4468–4475.

    Article  CAS  PubMed  Google Scholar 

  18. Van Coppernolle S, Verstichel G, Timmermans F, Velghe I, Vermijlen D, De Smedt M et al. Functionally mature CD4 and CD8 TCRalphabeta cells are generated in OP9-DL1 cultures from human CD34+ hematopoietic cells. J Immunol 2009; 183: 4859–4870.

    Article  CAS  PubMed  Google Scholar 

  19. Verfaillie CM, Miller JS . A novel single-cell proliferation assay shows that long-term culture-initiating cell (LTC-IC) maintenance over time results from the extensive proliferation of a small fraction of LTC-IC. Blood 1995; 86: 2137–2145.

    CAS  PubMed  Google Scholar 

  20. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  PubMed  Google Scholar 

  21. Zubakov D, Liu F, van Zelm MC, Vermeulen J, Oostra BA, van Duijn CM et al. Estimating human age from T-cell DNA rearrangements. Curr Biol 2010; 20: R970–R971.

    Article  CAS  PubMed  Google Scholar 

  22. Vanhecke D, Verhasselt B, De Smedt M, Leclercq G, Plum J, Vandekerckhove B . Human thymocytes become lineage committed at an early postselection CD69+ stage, before the onset of functional maturation. J Immunol 1997; 159: 5973–5983.

    CAS  PubMed  Google Scholar 

  23. Vanhecke D, Leclercq G, Plum J, Vandekerckhove B . Characterization of distinct stages during the differentiation of human CD69+CD3+ thymocytes and identification of thymic emigrants. J Immunol 1995; 155: 1862–1872.

    CAS  PubMed  Google Scholar 

  24. Spits H, Paliard X, Vandekerckhove Y, van Vlasselaer P, de Vries JE . Functional and phenotypic differences between CD4+ and CD4- T cell receptor-gamma delta clones from peripheral blood. J Immunol 1991; 147: 1180–1188.

    CAS  PubMed  Google Scholar 

  25. Taghon T, Yui MA, Pant R, Diamond RA, Rothenberg EV . Developmental and molecular characterization of emerging beta- and gammadelta-selected pre-T cells in the adult mouse thymus. Immunity 2006; 24: 53–64.

    Article  CAS  PubMed  Google Scholar 

  26. Taghon T, Van de Walle I, De Smet G, De Smedt M, Leclercq G, Vandekerckhove B et al. Notch signaling is required for proliferation but not for differentiation at a well-defined beta-selection checkpoint during human T-cell development. Blood 2009; 113: 3254–3263.

    Article  CAS  PubMed  Google Scholar 

  27. Dik WA, Pike-Overzet K, Weerkamp F, de Ridder D, de Haas EF, Baert MR et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 2005; 201: 1715–1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van de Walle I, De Smet G, De Smedt M, Vandekerckhove B, Leclercq G, Plum J et al. An early decrease in Notch activation is required for human TCR-alphabeta lineage differentiation at the expense of TCR-gammadelta T cells. Blood 2009; 113: 2988–2998.

    Article  CAS  PubMed  Google Scholar 

  29. Tatsumi Y, Pena JC, Matis L, Deluca D, Bluestone JA . Development of T cell receptor-gamma delta cells. Phenotypic and functional correlations of T cell receptor-gamma delta thymocyte maturation. J Immunol 1993; 151: 3030–3041.

    CAS  PubMed  Google Scholar 

  30. Wilson A, MacDonald HR . A limited role for beta-selection during gamma delta T cell development. J Immunol 1998; 161: 5851–5854.

    CAS  PubMed  Google Scholar 

  31. Joachims ML, Chain JL, Hooker SW, Knott-Craig CJ, Thompson LF . Human alpha beta and gamma delta thymocyte development: TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential—differences between men and mice. J Immunol 2006; 176: 1543–1552.

    Article  CAS  PubMed  Google Scholar 

  32. Lee SY, Stadanlick J, Kappes DJ, Wiest DL . Towards a molecular understanding of the differential signals regulating alphabeta/gammadelta T lineage choice. Semin Immunol 2010; 22: 237–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ikawa T, Kawamoto H, Goldrath AW, Murre C . E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med 2006; 203: 1329–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ciofani M, Knowles GC, Wiest DL, von Boehmer H, Zuniga-Pflucker JC . Stage-specific and differential notch dependency at the alphabeta and gammadelta T lineage bifurcation. Immunity 2006; 25: 105–116.

    Article  CAS  PubMed  Google Scholar 

  35. Tanigaki K, Tsuji M, Yamamoto N, Han H, Tsukada J, Inoue H et al. Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 2004; 20: 611–622.

    Article  CAS  PubMed  Google Scholar 

  36. Xi H, Schwartz R, Engel I, Murre C, Kersh GJ . Interplay between RORgammat, Egr3, and E proteins controls proliferation in response to pre-TCR signals. Immunity 2006; 24: 813–826.

    Article  CAS  PubMed  Google Scholar 

  37. O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007; 204: 1813–1824.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 2007; 204: 1825–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M, Hayday AC et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 2008; 40: 656–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jensen KD, Su X, Shin S, Li L, Youssef S, Yamasaki S et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 2008; 29: 90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mahtani-Patching J, Neves JF, Pang DJ, Stoenchev KV, Aguirre-Blanco AM, Silva-Santos B et al. PreTCR and TCRgammadelta signal initiation in thymocyte progenitors does not require domains implicated in receptor oligomerization. Science Signaling 2011; 4: ra47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van de Walle I, De Smet G, Gartner M, De Smedt M, Waegemans E, Vandekerckhove B et al. Jagged2 acts as a delta-like Notch ligand during early hematopoietic cell fate decisions. Blood 2011; 117: 4449–4459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Christian De Boever for performing art work. We also thank Dr I Vanhaute (Red Cross Flanders, Oost-Vlaanderen, Belgium), Dr K Francois and Dr G Van Nooten (UZ Ghent, Belgium) for providing human blood samples and PNT, and Dr Tom Boterberg for the irradiation procedures. This work was supported by the Fund for Scientific Research, Flanders (Fonds voor Wetenschappelijk Onderzoek Vlaanderen, FWO) and its Odysseus research program, Stichting tegen Kanker, the geconcerteerde onderzoeksactiviteiten (GOA of the Ghent University) and the Interuniversity Attraction Poles Program (IUAP) supported by the Belgian Science Policy. SVC, SV and GV are supported by the Instituut voor de Aanmoediging van Innovatie door Wetenschap en Technologie in Vlaanderen, IWT; SS, TT and TK are supported by the FWO Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Vandekerckhove.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Coppernolle, S., Vanhee, S., Verstichel, G. et al. Notch induces human T-cell receptor γδ+ thymocytes to differentiate along a parallel, highly proliferative and bipotent CD4 CD8 double-positive pathway. Leukemia 26, 127–138 (2012). https://doi.org/10.1038/leu.2011.324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.324

Keywords

This article is cited by

Search

Quick links