Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

CD38 increases CXCL12-mediated signals and homing of chronic lymphocytic leukemia cells

Abstract

Homing of chronic lymphocytic leukemia (CLL) cells to sites favoring growth, a critical step in disease progression, is principally coordinated by the CXCL12/CXCR4 axis. A cohort of 62 CLL patients was divided into migrating and nonmigrating subsets according to chemotaxis toward CXCL12. Migrating patients phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) proteins more than nonmigrating patients (P<0.0002). CD38 expression was the parameter most strongly associated with heightened CXCL12 signaling (P<0.0001), confirmed by independent statistical approaches. Consistent with this observation, CD38 CLL cells in samples with bimodal CD38 expression responded less to CXCL12 than the intact clone (P=0.003). Furthermore, lentivirus-induced de novo expression of CD38 was paralleled by increased responses to CXCL12, as compared with cells infected with a control virus. CD38 ligation with agonistic monoclonal antibodies (mAbs) enhanced CXCL12 signaling, whereas blocking anti-CD38 mAbs inhibited chemokine effects in vitro. This is attributed to physical proximity on the membrane between CD38 and CXCR4 (the CXCL12 receptor), as shown by (i) coimmunoprecipitation and (ii) confocal microscopy experiments. Blocking anti-CD38 mAbs significantly compromised homing of CLL cells from blood to lymphoid organs in a mouse model. These results indicate that CD38 synergizes with the CXCR4 pathway and support the working hypothesis that migration is a central step in disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  PubMed  Google Scholar 

  2. Pizzolo G, Chilosi M, Ambrosetti A, Semenzato G, Fiore-Donati L, Perona G . Immunohistologic study of bone marrow involvement in B-chronic lymphocytic leukemia. Blood 1983; 62: 1289–1296.

    CAS  PubMed  Google Scholar 

  3. Schmid C, Isaacson PG . Proliferation centres in B-cell malignant lymphoma, lymphocytic (B-CLL): an immunophenotypic study. Histopathology 1994; 24: 445–451.

    Article  CAS  PubMed  Google Scholar 

  4. Burger JA, Kipps TJ . Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma 2002; 43: 461–466.

    Article  CAS  PubMed  Google Scholar 

  5. Munk Pedersen I, Reed J . Microenvironmental interactions and survival of CLL B-cells. Leuk Lymphoma 2004; 45: 2365–2372.

    Article  CAS  PubMed  Google Scholar 

  6. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaksic O, Paro MM, Kardum Skelin I, Kusec R, Pejsa V, Jaksic B . CD38 on B-cell chronic lymphocytic leukemia cells has higher expression in lymph nodes than in peripheral blood or bone marrow. Blood 2004; 103: 1968–1969.

    Article  CAS  PubMed  Google Scholar 

  8. Patten PE, Buggins AG, Richards J, Wotherspoon A, Salisbury J, Mufti GJ et al. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood 2008; 111: 5173–5181.

    Article  CAS  PubMed  Google Scholar 

  9. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2777–2783.

    Article  CAS  PubMed  Google Scholar 

  10. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 2008; 88: 841–886.

    Article  CAS  PubMed  Google Scholar 

  11. Malavasi F, Caligaris-Cappio F, Milanese C, Dellabona P, Richiardi P, Carbonara AO . Characterization of a murine monoclonal antibody specific for human early lymphohemopoietic cells. Hum Immunol 1984; 9: 9–20.

    Article  CAS  PubMed  Google Scholar 

  12. Deaglio S, Mallone R, Baj G, Arnulfo A, Surico N, Dianzani U et al. CD38/CD31, a receptor/ligand system ruling adhesion and signaling in human leukocytes. Chem Immunol 2000; 75: 99–120.

    Article  CAS  PubMed  Google Scholar 

  13. Deaglio S, Aydin S, Grand MM, Vaisitti T, Bergui L, D’Arena G et al. CD38/CD31 interactions activate genetic pathways leading to proliferation and migration in chronic lymphocytic leukemia cells. Mol Med 2009; 16: 87–91.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Matrai Z . CD38 as a prognostic marker in CLL. Hematology 2005; 10: 39–46.

    Article  CAS  PubMed  Google Scholar 

  15. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. IgV gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  16. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  17. Deaglio S, Vaisitti T, Aydin S, Ferrero E, Malavasi F . In-tandem insight from basic science combined with clinical research: CD38 as both marker and key component of the pathogenetic network underlying chronic lymphocytic leukemia. Blood 2006; 108: 1135–1144.

    Article  CAS  PubMed  Google Scholar 

  18. Deaglio S, Vaisitti T, Bergui L, Bonello L, Horenstein AL, Tamagnone L et al. CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood 2005; 105: 3042–3050.

    Article  CAS  PubMed  Google Scholar 

  19. Deaglio S, Vaisitti T, Aydin S, Bergui L, D’Arena G, Bonello L et al. CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential. Blood 2007; 110: 4012–4021.

    Article  CAS  PubMed  Google Scholar 

  20. Burger JA, Kipps TJ . CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006; 107: 1761–1767.

    Article  CAS  PubMed  Google Scholar 

  21. Pearce L, Morgan L, Lin TT, Hewamana S, Matthews R, Deaglio S et al. Genetic modification of primary chronic lymphocytic leukaemia cells with a lentivirus expressing CD38. Haematologica 2010. in press.

  22. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 2002; 13: 803–813.

    Article  CAS  PubMed  Google Scholar 

  23. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ . Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 2000; 96: 2655–2663.

    CAS  PubMed  Google Scholar 

  24. Huang CY, Lee CY, Chen MY, Yang WH, Chen YH, Chang CH et al. Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-kappaB-dependent pathways. J Cell Physiol 2009; 221: 204–212.

    Article  CAS  PubMed  Google Scholar 

  25. Gao H, Priebe W, Glod J, Banerjee D . Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells 2009; 27: 857–865.

    Article  CAS  PubMed  Google Scholar 

  26. Pepper C, Ward R, Lin TT, Brennan P, Starczynski J, Musson M et al. Highly purified CD38(+) and CD38(-) sub-clones derived from the same chronic lymphocytic leukemia patient have distinct gene expression signatures despite their monoclonal origin. Leukemia 2007; 21: 687–696.

    Article  CAS  PubMed  Google Scholar 

  27. Till KJ, Harris RJ, Linford A, Spiller DG, Zuzel M, Cawley JC . Cell motility in chronic lymphocytic leukemia: defective Rap1 and alphaLbeta2 activation by chemokine. Cancer Res 2008; 68: 8429–8436.

    Article  CAS  PubMed  Google Scholar 

  28. Deaglio S, Capobianco A, Bergui L, Durig J, Morabito F, Duhrsen U et al. CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood 2003; 102: 2146–2155.

    Article  CAS  PubMed  Google Scholar 

  29. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 2004; 103: 2981–2989.

    Article  CAS  PubMed  Google Scholar 

  30. Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF . The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 2001; 29: 1439–1447.

    Article  CAS  PubMed  Google Scholar 

  31. Spiegel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 2004; 103: 2900–2907.

    Article  CAS  PubMed  Google Scholar 

  32. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351: 2159–2169.

    Article  CAS  PubMed  Google Scholar 

  33. Bonato M, Pittaluga S, Tierens A, Criel A, Verhoef G, Wlodarska I et al. Lymph node histology in typical and atypical chronic lymphocytic leukemia. Am J Surg Pathol 1998; 22: 49–56.

    Article  CAS  PubMed  Google Scholar 

  34. Calissano C, Damle RN, Hayes G, Murphy EJ, Hellerstein MK, Sison C et al. In vivo intra- and inter-clonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood 2009; 114: 4832–4842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin TT, Hewamana S, Ward R, Taylor H, Payne T, Pratt G et al. Highly purified CD38 sub-populations show no evidence of preferential clonal evolution despite having increased proliferative activity when compared with CD38 sub-populations derived from the same chronic lymphocytic leukaemia patient. Br J Haematol 2008; 142: 595–605.

    Article  CAS  PubMed  Google Scholar 

  36. Damle RN, Temburni S, Calissano C, Yancopoulos S, Banapour T, Sison C et al. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood 2007; 110: 3352–3359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Letilovic T, Vrhovac R, Verstovsek S, Jaksic B, Ferrajoli A . Role of angiogenesis in chronic lymphocytic leukemia. Cancer 2006; 107: 925–934.

    Article  CAS  PubMed  Google Scholar 

  38. Shanafelt TD, Kay NE . The clinical and biologic importance of neovascularization and angiogenic signaling pathways in chronic lymphocytic leukemia. Semin Oncol 2006; 33: 174–185.

    Article  CAS  PubMed  Google Scholar 

  39. Savarino A, Bensi T, Chiocchetti A, Bottarel F, Mesturini R, Ferrero E et al. Human CD38 interferes with HIV-1 fusion through a sequence homologous to the V3 loop of the viral envelope glycoprotein gp120. FASEB J 2003; 17: 461–463.

    Article  CAS  PubMed  Google Scholar 

  40. Durig J, Ebeling P, Grabellus F, Sorg UR, Mollmann M, Schutt P et al. A novel nonobese diabetic/severe combined immunodeficient xenograft model for chronic lymphocytic leukemia reflects important clinical characteristics of the disease. Cancer Res 2007; 67: 8653–8661.

    Article  PubMed  Google Scholar 

  41. Colmone A, Amorim M, Pontier A, Wang S, Jablonski E, Sipkins D . Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 2008; 322: 1861–1865.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The expert technical assistance of Ms K Gizzi is gratefully acknowledged. We thank Dr A Funaro (University of Turin, Italy) for purifying IB4 mAb. This work was supported by the Associazione Italiana Ricerca Cancro (AIRC; S.D.), CLL Global Research Foundation (S.D.), Compagnia SanPaolo, Progetti Ricerca Interesse Nazionale (PRIN; F.M.), University of Turin (S.D. and F.M.), Fondazione ‘Guido Berlucchi’ (F.M.), Regione Piemonte (S.D., T.V. and F.M.), Leukaemia Research UK (P.B. and C.P.) and Leukaemia Research Appeal for Wales (P.B. and C.P.). The Fondazione Internazionale Ricerche Medicina Sperimentale (FIRMS) provided financial and administrative assistance. T.V. is supported by a Federazione Italiana Ricerca Cancro (FIRC) fellowship. S.A. is a student of the Ph.D. program in Advanced Techniques in the Localization of Human Tumors (University of Turin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Deaglio.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaisitti, T., Aydin, S., Rossi, D. et al. CD38 increases CXCL12-mediated signals and homing of chronic lymphocytic leukemia cells. Leukemia 24, 958–969 (2010). https://doi.org/10.1038/leu.2010.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.36

Keywords

This article is cited by

Search

Quick links