Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

The transcription factor PlagL2 activates Mpl transcription and signaling in hematopoietic progenitor and leukemia cells

Abstract

Cytokine signaling pathways are frequent targets of oncogenic mutations in acute myeloid leukemia (AML), promoting proliferation and survival. We have previously shown that the transcription factor PLAGL2 promotes proliferation and cooperates with the leukemia fusion protein Cbfβ-SMMHC in AML development. Here, we show that PLAGL2 upregulates expression of the thrombopoietin receptor Mpl, using two consensus sites in its proximal promoter. We also show that Mpl overexpression efficiently cooperates with Cbfβ-SMMHC in development of leukemia in mice. Finally, we demonstrate that PlagL2-expressing leukemic cells show hyper-activation of Jak2 and downstream STAT5, Akt and Erk1/2 pathways in response to Thpo ligand. These results show that PlagL2 expression activates expression of Mpl in hematopoietic progenitors, and that upregulation of wild-type Mpl provides an oncogenic signal in cooperation with CBFβ-SMMHC in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Look AT . Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064.

    CAS  PubMed  Google Scholar 

  2. Castilla LH, Wijmenga C, Wang Q, Stacy T, Speck NA, Eckhaus M et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell 1996; 87: 687–696.

    Article  CAS  PubMed  Google Scholar 

  3. Kuo YH, Landrette SF, Heilman SA, Perrat PN, Garrett L, Liu PP et al. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 2006; 9: 57–68.

    Article  CAS  PubMed  Google Scholar 

  4. Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 2006; 20: 965–970.

    Article  CAS  PubMed  Google Scholar 

  5. Care RS, Valk PJ, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WM, Wilson GA et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 2003; 121: 775–777.

    Article  CAS  PubMed  Google Scholar 

  6. Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 2005; 115: 2159–2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  8. Speck NA, Gilliland DG . Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002; 2: 502–513.

    Article  CAS  PubMed  Google Scholar 

  9. Castilla LH, Perrat P, Martinez NJ, Landrette SF, Keys R, Oikemus S et al. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci USA 2004; 101: 4924–4929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landrette SF, Kuo YH, Hensen K, Barjesteh van Waalwijk van Doorn-Khosrovani S, Perrat PN, Van de Ven WJ et al. Plag1 and Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-MYH11. Blood 2005; 105: 2900–2907.

    Article  CAS  PubMed  Google Scholar 

  11. Voz ML, Agten NS, Van de Ven WJ, Kas K . PLAG1, the main translocation target in pleomorphic adenoma of the salivary glands, is a positive regulator of IGF-II. Cancer Res 2000; 60: 106–113.

    CAS  PubMed  Google Scholar 

  12. Declercq J, Skaland I, Van Dyck F, Janssen EA, Baak JP, Drijkoningen M et al. Adenomyoepitheliomatous lesions of the mammary glands in transgenic mice with targeted PLAG1 overexpression. Int J Cancer 2008; 123: 1593–1600.

    Article  CAS  PubMed  Google Scholar 

  13. Kas K, Voz ML, Roijer E, Astrom AK, Meyen E, Stenman G et al. Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat Genet 1997; 15: 170–174.

    Article  CAS  PubMed  Google Scholar 

  14. Pallasch CP, Patz M, Park YJ, Hagist S, Eggle D, Claus R et al. miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia. Blood 2009; 114: 3255–3264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

    Article  CAS  PubMed  Google Scholar 

  16. Javed A, Zaidi SK, Gutierrez SE, Lengner CJ, Harrington KS, Hovhannisyan H et al. Protein-deoxyribonucleic acid interactions linked to gene expression: electrophoretic mobility shift assay. Methods Mol Biol 2004; 285: 45–55.

    CAS  PubMed  Google Scholar 

  17. Hensen K, Van Valckenborgh IC, Kas K, Van de Ven WJ, Voz ML . The tumorigenic diversity of the three PLAG family members is associated with different DNA binding capacities. Cancer Res 2002; 62: 1510–1517.

    CAS  PubMed  Google Scholar 

  18. Kas K, Voz ML, Hensen K, Meyen E, Van de Ven WJ . Transcriptional activation capacity of the novel PLAG family of zinc finger proteins. J Biol Chem 1998; 273: 23026–23032.

    Article  CAS  PubMed  Google Scholar 

  19. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 1999; 23: 144–146.

    Article  CAS  PubMed  Google Scholar 

  20. Challier C, Cocault L, Flon M, Pauchard M, Porteu F, Gisselbrecht S et al. A new feature of Mpl receptor: ligand-induced transforming activity in FRE rat fibroblasts. Oncogene 2000; 19: 2033–2042.

    Article  CAS  PubMed  Google Scholar 

  21. Bouscary D, Lecoq-Lafon C, Chretien S, Zompi S, Fichelson S, Muller O et al. Role of Gab proteins in phosphatidylinositol 3-kinase activation by thrombopoietin (Tpo). Oncogene 2001; 20: 2197–2204.

    Article  CAS  PubMed  Google Scholar 

  22. Drachman JG, Griffin JD, Kaushansky K . The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl. J Biol Chem 1995; 270: 4979–4982.

    Article  CAS  PubMed  Google Scholar 

  23. Kaushansky K . Lineage-specific hematopoietic growth factors. N Engl J Med 2006; 354: 2034–2045.

    Article  CAS  PubMed  Google Scholar 

  24. Voz ML, Mathys J, Hensen K, Pendeville H, Van Valckenborgh I, Van Huffel C et al. Microarray screening for target genes of the proto-oncogene PLAG1. Oncogene 2004; 23: 179–191.

    Article  CAS  PubMed  Google Scholar 

  25. Kondo T, Okabe M, Sanada M, Kurosawa M, Suzuki S, Kobayashi M et al. Familial essential thrombocythemia associated with one-base deletion in the 5′-untranslated region of the thrombopoietin gene. Blood 1998; 92: 1091–1096.

    CAS  PubMed  Google Scholar 

  26. Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, Satoh A et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 2004; 103: 4198–4200.

    Article  CAS  PubMed  Google Scholar 

  27. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    Article  CAS  PubMed  Google Scholar 

  28. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Deveaux S, Filipe A, Lemarchandel V, Ghysdael J, Romeo PH, Mignotte V . Analysis of the thrombopoietin receptor (MPL) promoter implicates GATA and Ets proteins in the coregulation of megakaryocyte-specific genes. Blood 1996; 87: 4678–4685.

    CAS  PubMed  Google Scholar 

  30. Huang H, Yu M, Akie TE, Moran TB, Woo AJ, Tu N et al. Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development. Mol Cell Biol 2009; 29: 4103–4115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jackers P, Szalai G, Moussa O, Watson DK . Ets-dependent regulation of target gene expression during megakaryopoiesis. J Biol Chem 2004; 279: 52183–52190.

    Article  CAS  PubMed  Google Scholar 

  32. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D . Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 1996; 87: 2162–2170.

    CAS  PubMed  Google Scholar 

  33. Kimura S, Roberts AW, Metcalf D, Alexander WS . Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc Natl Acad Sci USA 1998; 95: 1195–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 2007; 1: 685–697.

    Article  CAS  PubMed  Google Scholar 

  35. Abdollahi A . LOT1 (ZAC1/PLAGL1) and its family members: mechanisms and functions. J Cell Physiol 2007; 210: 16–25.

    Article  CAS  PubMed  Google Scholar 

  36. Valleley EM, Cordery SF, Carr IM, MacLennan KA, Bonthron DT . Loss of expression of ZAC/PLAGL1 in diffuse large B-cell lymphoma is independent of promoter hypermethylation. Genes Chromosomes Cancer 2010; 49: 480–486.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Julie Zhu and Stephen Baker for the statistical analyses of the expression data. This work was supported by National Institutes of Health Grant CA09683 to LHC, and Core resources were supported by the Diabetes Endocrinology Research Center Grant DK32520. LHC is recipient of a Scholar Award from the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L H Castilla.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landrette, S., Madera, D., He, F. et al. The transcription factor PlagL2 activates Mpl transcription and signaling in hematopoietic progenitor and leukemia cells. Leukemia 25, 655–662 (2011). https://doi.org/10.1038/leu.2010.301

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.301

Keywords

This article is cited by

Search

Quick links