Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

What does cyclicity on amplitude-integrated EEG mean?

Abstract

In the context of amplitude-integrated electroencephalography (aEEG), the term ‘sleep–wake cycling’ (SWC), which is frequently used by clinicians and researchers, should be changed to ‘cyclicity’. SWC is a technical term that refers to the biological pattern of alternating sleeping and waking states, which is difficult to define with only aEEG and no physical parameters. Additionally, the absence of cyclicity on aEEG is a more robust reflection of the sequence of the suppressed background patterns of an aEEG following cerebral injury or dysfunction than are sleep/wake states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Boylan GB, Burgoyne L, Moore C, O'Flaherty B, Rennie JM . An international survey of EEG use in the neonatal intensive care unit. Acta Pediatrica 2010; 99: 1150–1155.

    Article  Google Scholar 

  2. Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomized trial. Lancet 2005; 365: 663–670.

    Article  Google Scholar 

  3. Parmelee AH, Wenner WH, Schulz HR . Infant sleep patterns: from birth to 16 weeks of age. J Pediatr 1964; 65: 576–582.

    Article  Google Scholar 

  4. Osredlar D, Toet MC, van Rooij LGM, van Huffelen AC, Groenendaal F, de Vries LS . Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatrics 2005; 115: 327–332.

    Article  Google Scholar 

  5. Thoresen M, Hellström-Westas L, Liu X, de Vries LS . Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 2010; 126: e131–e139.

    Article  Google Scholar 

  6. Takenouchi T, Rubens EO, Yap VL, Ross G, Engel M, Perlman JM . Delayed onset of sleep-wake cycling with favorable outcome in hypothermic-treated neonates with encephalopathy. J Pediatr 2011; 159 (2): 232–237.

    Article  Google Scholar 

  7. Rechtschaffen A, Kales A (eds). A manual of standardized terminology, techniques and scoring system of sleep stages in human subjects. Brain Information Service/Brain Research Institute, University of California: Los Angeles, 1968.

  8. Iber C, Ancoli-Israel S, Chesson A, Quan SF (eds). The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification 1st edn, American Academy of Sleep Medicine: Westchester, IL, 2007.

  9. André M, Lamblin MD, d'Allest AM, Curzi-Dascalova L, Moussalli-Salefranque F, S Nguyen The T et al. Electroencephalography in preterm and full-term infants. Developmental features and glossary. Neurophysiol Clin 2010; 40: 59–124.

    Article  Google Scholar 

  10. Scher MS, Steppe DA, Dahl RE, Asthana S, Guthrie RD . Comparison of EEG-sleep measures in healthy fullterm and preterm infants at matched postconceptional ages. Sleep 1992; 15: 442–448.

    Article  CAS  Google Scholar 

  11. Watanabe K . The neurophysiological examination of the newborn infant. In: Eyre JA (eds). The Neurophysiological Examination of the Newborn Infant 1992; 11–47.

  12. Prechtl HF . The organization of behavioral states and their dysfunction. Semin Perinatol 1992; 16: 258–263.

    CAS  PubMed  Google Scholar 

  13. Anders T, Emde R, Parmelee A . A manual of standardized terminology, techniques and criteria for scoring of states of sleep and wakefulness in newborn infants. NINDS Neurological Information Network. UCLA Brain Information Service/BRI Publications Office: Los Angeles, CA, 1971.

    Google Scholar 

  14. Parmelee AH, Schulte FJ, Akiyama Y, Wenner WH, Stern E . Development of states in infants. In: Clemente CD, Purpura D, Mayer FE (eds). Sleep and the Maturing Nervous System. Academic Press: New York, 1972, 199–215.

    Google Scholar 

  15. Sterman M, Hoppenbrauwers T . The development of sleep-waking and rest-activity patterns from fetus to adult in man. In: Sterman M, McGinty D, Adinolfi A (eds). Brain Development and Behavior. Academic Press: New York, 1971; 203–225.

    Google Scholar 

  16. Hellström-Westas L, de Vries L, Rosen I . An atlas of amplitude-integrated EEGs in the newborn 2nd edn. Parthenon Publishing: London, 2008.

  17. Scher MS, Johnson MW, Holditch-Davis D . Cyclicity of neonatal sleep behaviors at 25 to 30 weeks' postconceptional age. Pediatr Res 2005; 57: 879–882.

    Article  Google Scholar 

  18. Olischar M, Klebermass K, Kuhle S, Hulek M, Kohlhauser C, Rücklinger E et al. Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks' gestational age. Pediatrics 2004; 113 (1): e61–e66.

    Article  Google Scholar 

  19. Parmelee Jr AH, Wenner WH, Akiyama Y, Schultz M, Stern E . Sleep states in preterm infants. Dev Med Child Neurol 1967; 9: 70–77.

    Article  Google Scholar 

  20. Pace-Schott EF, Hobson JA . The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nature Rev Neurosci 2002; 3: 591–605.

    Article  CAS  Google Scholar 

  21. Khazipov R, Sirota A, Leinekugel X, Holmes GL, Ben Ari Y, Buzsaki G . Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 2004; 432: 758–761.

    Article  CAS  Google Scholar 

  22. Steriade M, Timofeev I . Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 2003; 20: 563–576.

    Article  Google Scholar 

  23. Contreras D, Destexhe A, Sejnowski TJ, Steriade M . Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 1996; 274 (5288): 771–774.

    Article  CAS  Google Scholar 

  24. Holmes GL, Lombroso CT . Prognostic value of background patterns in the neonatal EEG. J Clin Neurophysiol 1993; 10: 323–352.

    Article  CAS  Google Scholar 

  25. Clancy RR, Bergqvist AGC, Dlugos DJ . Neonatal electroencephalography. In: Ebersole J, Pedley T (eds). Current Practice of Clinical Electroencephalography. 3rd edn. Lippomcott Williams & Wilkins: Philadeiphia, 2003; 160–234.

    Google Scholar 

  26. Watanabe K, Miyazaki S, Hara K, Hakamada S . Behavioral state cycles, background EEGs and prognosis of newborns with perinatal hypoxia. Electroencephalogr Clin Neurophysiology 1980; 49: 618–625.

    Article  CAS  Google Scholar 

  27. Watanabe K, Iwase K, Hara K . Development of slow-wave sleep in low-birthweight infants. Dev Med Child Neurol 1974; 16: 23–31.

    Article  CAS  Google Scholar 

  28. Rattenborg NC . Evolution of slow-wave sleep and palloppallial connectivity in mammals and birds: a hypothesis. Brain Res Bull 2006; 69: 20–29.

    Article  Google Scholar 

  29. Miyazaki S, Watanabe K, Hara K . Heart rate variability in full-term normal and abnormal newborn infants during sleep. Brain Dev 1979; 1: 57–60.

    Article  CAS  Google Scholar 

  30. Takeuchi T, Watanabe K . The EEG evolution and neurological prognosis of neonates with perinatal hypoxia. Brain Dev 1989; 11: 115–120.

    Article  CAS  Google Scholar 

  31. Hellström-Westas L, de Vries LS, Greisen G . Amplitude-integrated EEG classification and interpretation in preterm and term infants. Neoreviews 2006; 7: e76–e87.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Tetsuo Kubota of Anjo Kosei Hospital and Dr Toru Kato of Okazaki City Hospital for providing us the data of aEEG and conventional EEG for figures. Additionally, we thank Dr Eilon Shany of Ben Gurion University of Neger for notable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Kidokoro.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidokoro, H., Inder, T., Okumura, A. et al. What does cyclicity on amplitude-integrated EEG mean?. J Perinatol 32, 565–569 (2012). https://doi.org/10.1038/jp.2012.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2012.25

Keywords

This article is cited by

Search

Quick links