Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of left atrial phasic volumes with systemic arterial stiffness and ankle–brachial index in hypertensive patients

Abstract

Left atrial (LA) phasic volumes consist of reservoir, conduit and booster pump volumes. Arterial stiffness is linked to lower systemic arterial compliance (SAC) contributing to cardiac afterload. Arterial stiffness may be a modulator of LA phasic volumes. Echocardiography was performed in 161 hypertensive patients and in 50 normotensive subjects in order to assess biplane LA volumes (maximum, before atrial contraction, minimum), early and late diastolic mitral annular velocity (e′ and a′), and LV stroke volume. LA emptying volumes (total, passive, active) were calculated from these LA volumes. Blood pressures were measured using an automated oscillometric device simultaneously at the four limbs for evaluating pulse pressure (PP) and ankle–brachial index (ABI). SAC was estimated by the ratio of LV stroke volume indexed by body surface area (BSA) divided by PP. All three LA volumes, LA total volume and LA active emptying volume were greater in hypertensive patients than in normotensive subjects. A multiple linear regression analysis indicated that LA passive emptying volume (reservoir=early diastole)/BSA correlated positively with ABI after being adjusted for age, gender, BSA, LV mass, max LA volume, e′ and SAC in hypertensive patients. LA active emptying volume (booster=late diastole)/BSA correlated positively with SAC after being adjusted for age, gender, BSA, LV mass, LA volume before atrial contraction, a′ and ABI. LA reservoir volume was associated with ABI, and LA booster volume was related to systemic arterial stiffness in hypertensive patients, suggesting the LA–arterial coupling in this clinical setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Rosca M, Lancellotti P, Popescu BA, Pierard LA . Left atrial function: pathophysiology, echocardiographic assessment, and clinical applications. Heart 2011; 97 (23): 1982–1989.

    Article  Google Scholar 

  2. Hoit BD . Left atrial size and function: role in prognosis. J Am Coll Cardiol 2014; 63 (6): 493–505.

    Article  Google Scholar 

  3. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB . Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 2002; 90 (12): 1284–1289.

    Article  Google Scholar 

  4. Miyoshi H, Oishi Y, Mizuguchi Y, Iuchi A, Nagase N, Ara N et al. Early predictors of alterations in left atrial structure and function related to left ventricular dysfunction in asymptomatic patients with hypertension. J Am Soc Hypertens 2013; 7 (3): 206–215.

    Article  Google Scholar 

  5. Pritchett AM, Mahoney DW, Jacobsen SJ, Rodeheffer RJ, Karon BL, Redfield MM . Diastolic dysfunction and left atrial volume: a population-based study. J Am Coll Cardiol 2005; 45 (1): 87–92.

    Article  Google Scholar 

  6. Eshoo S, Ross DL, Thomas L . Impact of mild hypertension on left atrial size and function. Circ Cardiovasc Imaging 2009; 2 (2): 93–99.

    Article  Google Scholar 

  7. Boyd AC, Eshoo S, Richards DA, Thomas L . Hypertension accelerates the 'normal' aging process with a premature increase in left atrial volume. J Am Soc Hypertens 2013; 7 (2): 149–156.

    Article  Google Scholar 

  8. Briand M, Dumesnil JG, Kadem L, Tongue AG, Rieu R, Garcia D et al. Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: implications for diagnosis and treatment. J Am Coll Cardiol 2005; 46 (2): 291–298.

    Article  Google Scholar 

  9. Palmieri V, Bella JN, Roman MJ, Gerdts E, Papademetriou V, Wachtell K et al. Pulse pressure/stroke index and left ventricular geometry and function: the LIFE Study. J Hypertens 2003; 21 (4): 781–787.

    Article  CAS  Google Scholar 

  10. Jaroch J, Rzyczkowska B, Bociaga Z, Loboz-Rudnicka M, Kruszynska E, Rychard W et al. Arterial-atrial coupling in untreated hypertension. Blood Press 2015; 24 (2): 72–78.

    Article  Google Scholar 

  11. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation 2012; 126 (24): 2890–2909.

    Article  Google Scholar 

  12. Rizvi S, Kamran H, Salciccioli L, Saiful F, Lafferty J, Lazar JM . Relation of the ankle brachial index to left ventricular ejection fraction. Am J Cardiol 2010; 105 (1): 129–132.

    Article  Google Scholar 

  13. Weber T, Auer J, Lamm G, O'Rourke MF, Eber B . Arterial stiffness, central blood pressures, and wave reflections in cardiomyopathy-implications for risk stratification. J Card Fail 2007; 13 (5): 353–359.

    Article  Google Scholar 

  14. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 2003; 16 (7): 777–802.

    Article  Google Scholar 

  15. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005; 18 (12): 1440–1463.

    Article  Google Scholar 

  16. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA . Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 1997; 30 (6): 1527–1533.

    Article  CAS  Google Scholar 

  17. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 2007; 28 (20): 2539–2550.

    Article  Google Scholar 

  18. Yamamoto T, Oki T, Yamada H, Tanaka H, Ishimoto T, Wakatsuki T et al. Prognostic value of the atrial systolic mitral annular motion velocity in patients with left ventricular systolic dysfunction. J Am Soc Echocardiogr 2003; 16 (4): 333–339.

    Article  Google Scholar 

  19. Khankirawatana B, Khankirawatana S, Peterson B, Mahrous H, Porter TR . Peak atrial systolic mitral annular velocity by Doppler tissue reliably predicts left atrial systolic function. J Am Soc Echocardiogr 2004; 17 (4): 353–360.

    Article  Google Scholar 

  20. Cortez-Cooper MY, Supak JA, Tanaka H . A new device for automatic measurements of arterial stiffness and ankle-brachial index. Am J Cardiol 2003; 91 (12): 1519–1522 A9.

    Article  Google Scholar 

  21. Richart T, Kuznetsova T, Wizner B, Struijker-Boudier HA, Staessen JA . Validation of automated oscillometric versus manual measurement of the ankle-brachial index. Hypertens Res 2009; 32 (10): 884–888.

    Article  Google Scholar 

  22. Park KH, Park WJ, Kim MK, Jung JH, Choi S, Cho JR et al. Noninvasive brachial-ankle pulse wave velocity in hypertensive patients with left ventricular hypertrophy. Am J Hypertens 2010; 23 (3): 269–274.

    Article  Google Scholar 

  23. Vickery S, Stevens PE, Dalton RN, van Lente F, Lamb EJ . Does the ID-MS traceable MDRD equation work and is it suitable for use with compensated Jaffe and enzymatic creatinine assays? Nephrol Dial Transplant 2006; 21 (9): 2439–2445.

    Article  CAS  Google Scholar 

  24. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009; 53 (6): 982–992.

    Article  CAS  Google Scholar 

  25. Devereux RB, de Simone G, Arnett DK, Best LG, Boerwinkle E, Howard BV et al. Normal limits in relation to age, body size and gender of two-dmensional echocardiographic aortic root dimensions in persons >/=15 years of age. Am J Cardiol 2012; 110 (8): 1189–1194.

    Article  Google Scholar 

  26. Safar ME, Laurent P . Pulse pressure and arterial stiffness in rats: comparison with humans. Am J Physiol Heart Circ Physiol 2003; 285 (4): H1363–H1369.

    Article  CAS  Google Scholar 

  27. Safar ME, Levy BI, Struijker-Boudier H . Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 2003; 107 (22): 2864–2869.

    Article  Google Scholar 

  28. Schiffrin EL . Vascular remodeling in hypertension: mechanisms and treatment. Hypertension 2012; 59 (2): 367–374.

    Article  CAS  Google Scholar 

  29. Ainscough JF, Drinkhill MJ, Sedo A, Turner NA, Brooke DA, Balmforth AJ et al. Angiotensin II type-1 receptor activation in the adult heart causes blood pressure-independent hypertrophy and cardiac dysfunction. Cardiovasc Res 2009; 81 (3): 592–600.

    Article  CAS  Google Scholar 

  30. Korhonen PE, Syvanen KT, Vesalainen RK, Kantola IM, Kautiainen H, Jarvenpaa S et al. Ankle-brachial index is lower in hypertensive than in normotensive individuals in a cardiovascular risk population. J Hypertens 2009; 27 (10): 2036–2043.

    Article  CAS  Google Scholar 

  31. Kass DA . Ventricular arterial stiffening: integrating the pathophysiology. Hypertension 2005; 46 (1): 185–193.

    Article  CAS  Google Scholar 

  32. Miyoshi H, Mizuguchi Y, Oishi Y, Iuchi A, Nagase N, Ara N et al. Early detection of abnormal left atrial-left ventricular-arterial coupling in preclinical patients with cardiovascular risk factors: evaluation by two-dimensional speckle-tracking echocardiography. Eur J Echocardiogr 2011; 12 (6): 431–439.

    Article  Google Scholar 

  33. Morillas P, Cordero A, Bertomeu V, Gonzalez-Juanatey JR, Quiles J, Guindo J et al. Prognostic value of low ankle-brachial index in patients with hypertension and acute coronary syndromes. J Hypertens 2009; 27 (2): 341–347.

    Article  CAS  Google Scholar 

  34. Xu L, Jiang CQ, Lam TH, Yue XJ, Lin JM, Cheng KK et al. Arterial stiffness and left-ventricular diastolic dysfunction: Guangzhou Biobank Cohort Study-CVD. J Hum Hypertens 2011; 25 (3): 152–158.

    Article  CAS  Google Scholar 

  35. Abhayaratna WP, Srikusalanukul W, Budge MM . Aortic stiffness for the detection of preclinical left ventricular diastolic dysfunction: pulse wave velocity versus pulse pressure. J Hypertens 2008; 26 (4): 758–764.

    Article  CAS  Google Scholar 

  36. Doobay AV, Anand SS . Sensitivity and specificity of the ankle-brachial index to predict future cardiovascular outcomes: a systematic review. Arterioscler Thromb Vasc Biol 2005; 25 (7): 1463–1469.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Iida.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iida, M., Yamamoto, M., Ishiguro, Y. et al. Association of left atrial phasic volumes with systemic arterial stiffness and ankle–brachial index in hypertensive patients. J Hum Hypertens 31, 270–277 (2017). https://doi.org/10.1038/jhh.2016.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2016.74

Search

Quick links