Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bayesian hierarchical modeling of cardiac response to particulate matter exposure

Abstract

Studies have linked increased levels of particulate air pollution to decreased autonomic control, as measured by heart rate variability (HRV), particularly in susceptible populations such as the elderly. In this study, we use data obtained from the 1998 USEPA epidemiology-exposure longitudinal panel study of elderly adults in a Baltimore retirement home to examine the relationship between HRV and PM2.5 personal exposure. We consider PM2.5 personal exposure in the aggregate and personal exposure to the components of PM2.5 as estimated in two ways using receptor models. We develop a Bayesian hierarchical model for HRV as a function of personal exposure to PM2.5, which integrates HRV measurements and data obtained from personal, indoor and outdoor PM2.5 monitoring and meteorological data. We found a strong relationship between decreased HRV (HF, LF, r-MSSD and SDNN) and total personal exposure to PM2.5 at a lag of 1 day. Using personal exposure monitoring (PEM) apportionment results, we examined the relative importance of ambient and non-ambient personal PM2.5 exposure to HRV and found the effect of internal non-ambient sources of PM2.5 on HRV to be minimal. Using the PEM apportionment data, a consistent effect of soil at short time scales (lag 0) was found across all five HRV measures, and an effect of sulfate on HRV was seen for HF and r-MSSD at the moving average of lags 0 and 1 days. Modeling of ambient site apportionment data indicated effects of nitrate on HRV at lags of 1 day, and moving averages of days 0 and 1 and days 0–2 for all but the ratio LF/HF. Sulfate had an effect on HRV at a lag of 1 day for four HRV measures (HF, LF, r-MSSD, SDNN) and for LF/HF at a moving average of days 0–2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Cavallari J., Fang S., Eisen E., Schwartz J., Hauser R., Herrick R., and Christiani D. Time course of heart rate variability decline following particulate matter exposures in an occupational cohort. Inhal Tox 2008: 20 (4): 415–422.

    Article  CAS  Google Scholar 

  • Creason J., Neas L., Walsh D., Williams R., Sheldon L., Liao D., and Shy C. Particulate matter and heart rate variability among elderly retirees: the Baltimore 1998 PM study. J Expo Anal Environ Epidemiol 2001: 11: 1–7.

    Google Scholar 

  • Dekker J., Schouten E., Klootwijk P., Pool J., Swenne C., and Kromhout D. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men: the Zutphen Study. Am J Epidemiol 1997: 145: 899–908.

    Article  CAS  PubMed  Google Scholar 

  • Devlin R.B., Ghio A.J., Kehrl H., Sanders G., and Cascio W. Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur Respir J 2003: 21 (40): 76s–80s.

    Article  CAS  Google Scholar 

  • Diggle P. An approach to the analysis of repeated measurements. Biometrics 1988: 44 (17): 959–971.

    Article  CAS  PubMed  Google Scholar 

  • Dockery D. Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect 2001: 109: 483–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dockery D., Pope C., Xu X., Spengler J., Ware J., Fay M., Ferris B., and Speizer F. An association between air pollution and mortality in six US cities. New Engl J Med 1993: 329: 1753–1759.

    Article  CAS  PubMed  Google Scholar 

  • Finlayson-Pitts B., and Pitts J. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications. Academic Press, Inc., San Diego, CA, 1999.

    Google Scholar 

  • Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal 2006: 1: 515–533.

    Article  Google Scholar 

  • Gelman A., Carlin J.B., Stern H.S., and Rubin D.B. Bayesian Data Analysis, 2nd edn. Chapman and Hall, New York, NY, 2003.

    Google Scholar 

  • Gelman A., and Hill J. Data Analysis using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York, NY, 2007.

    Google Scholar 

  • Godleski J., Verrier R., Koutrakis P., and Catalano P. Mechanisms of Morbidity and Mortality from Exposure to Ambient Air Particles. Tech. Rep. 91, Health Effects Institute, Cambridge, MA, 2000.

    Google Scholar 

  • Hastie T., and Tibshirani R. Generalized Additive Models. Chapman and Hall, New York, NY, 1990.

    Google Scholar 

  • Holloman C., Bortnik S., Morara M., Strauss W., and Calder C. A Bayesian hierarchical approach for relating PM2.5 exposure to cardiovascular mortality in North Carolina. Environ Health Perspect 2004: 112: 1282–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopke P.K., Ramadan Z., Paatero P., Norris G.A., Landis M.S., Williams R.W., and Lewis C.W. Receptor modeling of ambient and personal exposure samples: the 1998 Baltimore Particulate Matter Epidemiology-Exposure Study. Atmos Environ 2003: 37: 3289–3302.

    Article  CAS  Google Scholar 

  • Huang Y., Dominici F., and Bell M. Bayesian hierarchical distributed lag models for summer ozone exposure and cardio-respiratory mortality. Environmetrics 2005: 16: 547–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones G., Haran M., Caffo B., and Neath R. Fixed-width output analysis for Markov Chain Monte Carlo. J Am Stat Assoc 2006: 101: 1537–1547.

    Article  CAS  Google Scholar 

  • La Rovere M., Bigger J., Marcus F., Mortara A., and Schwartz P. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 1998: 351: 478–484.

    Article  CAS  PubMed  Google Scholar 

  • Laden F., Neas L., Dockery D., and Schwartz J. Association of fine particulate matter from different sources with daily mortality in six US cities. Environ Health Perspect 2000: 108: 941–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis M.S., Norris G.A., Williams R.W., and Weinstein J.P. Personal exposures to PM2.5 mass and trace elements in Baltimore, MD, USA. Atmos Environ 2001: 35: 6511–6524.

    Article  CAS  Google Scholar 

  • Liao D., Creason J., Shy C., Williams R., Watts R., and Zweidinger R. Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly. Environ Health Perspect 1999: 107: 521–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luttman-Gibson H., Coull B.A., Dockery D.W., Ebelt S.T., Schwartz J., Stone P.H., Suh H.H., and Gold D.R. Short-term effects of air pollution on heart rate variability in senior adults in Steubenville, Ohio. J Occup Environ Med 2006: 48 (8): 780–788.

    Article  Google Scholar 

  • Magari S.R., Hauser R., Schwartz J., Williams P.L., Smith T.J., and Christiani D.C. Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation 2001: 104: 986–991.

    Article  CAS  PubMed  Google Scholar 

  • Mar T., Ito K., Koenig J., Larson T.V., Eatough D.J., Henry R.C., Kim E., Laden F., Lall R., Neas L., Stolzel M., Paatero P., Hopke P.K., and Thurston G.D. PM source apportionment and health effects. 3. Investigation of inter-method variations in associations between estimated source contributions of PM2.5 and daily mortality in Phoenix, AZ. J Expo Anal Environ Epidemiol 2006: 16: 311–320.

    Article  CAS  Google Scholar 

  • McBride S., Williams R., and Creason J. Bayesian hierarchical modeling of personal exposure to particulate matter. Atmos Environ 2007: 41: 6143–6155.

    Article  CAS  Google Scholar 

  • Nikolov M.C., Coull B.A., Catalano P.J., and Godleski J.J. An informative Bayesian structural equation model to assess source-specific health effects of air pollution. Biostatistics 2007: 8: 609–624.

    Article  PubMed  Google Scholar 

  • Ntzoufras I. Bayesian Modeling using WinBUGS. John Wiley & Sons, New York, NY, 2009.

    Book  Google Scholar 

  • O’Neill M., Zanobetti A., and Schwartz J. Modiers of the temperature and mortality association in seven US cities. Am J Epidemiol 2003: 157: 1074–1082.

    Article  PubMed  Google Scholar 

  • Özkaynak H., Xue J., Spengler J., Wallace L., Pellizzari E., and Jenkins P. Personal exposure to airborne particles and metals: results from the Particle PTEAM study in Riverside, California. J Expo Anal Environ Epidemiol 1996: 6: 57–78.

    PubMed  Google Scholar 

  • Paatero P. A weighted non-negative least squares algorithm for three-way PARAFAC factor analysis. Chemometr Intell Lab 1997: 37: 223–242.

    Article  Google Scholar 

  • Paatero P. The multilinear engine—a table-driven least squares program for solving multilinear problems including the n-way parallel factor analysis model. J Comput Graph Stat 1999: 8: 854–888.

    Google Scholar 

  • Park S.K., O’Neill M.S., Vokonas P.S., Sparrow D., and Schwartz J. Effects of air pollution on heart rate variability: the VA Normative Aging Study. Environ Health Perspect 2005: 113: 304–309.

    Article  PubMed  Google Scholar 

  • Pope C.A., Hansen M.L., Long R.W., Nielsen K.R., Eatough N.L., Wilson W.E., and Eatough D.J. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ Health Perspect 2004: 112 (3): 339–345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson S., and Best N. Bayesian hierarchical models in ecological studies of health environment effects. Environmetrics 2003: 14: 129–147.

    Article  Google Scholar 

  • Sarnat J.A., Marmur A., Klein M., Kim E., Russell A.G., Sarnat S.E., Mulholland J.A., Hopke P.K., and Tolbert P.E. Fine particle sources and cardiorespiratory morbidity: an application of chemical mass balance and factor analytical source-apportionment methods. Environ Health Perspect 2008: 116: 459–466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiegelhalter D., Thomas A., Best N., and Lunn D. WinBUGS Version 1.4.1, MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK. http://www.mrcbsu.cam.ac.uk/bugs, 2003.

  • Strand M., Vedal S., Rodes C., Dutton S., Gelfand E., and Rabinovitch N. Estimating effects of ambient PM2.5 exposure on health using PM2.5 component measurements and regression calibration. J Expo Sci Environ Epidemiol 2006: 16: 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Wallace L., and Williams R. Use of personal-indoor-outdoor sulfur concentrations to estimate the infiltration factor and outdoor exposure factor for individual homes and persons. Environ Sci Technol 2005: 39 (6): 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  • Wallace W., Williams R., Suggs J., and Jones P. Estimating Contributions of Outdoor Fine Particles to Indoor Concentrations and Personal Exposures: Effects of Household Characteristics and Personal Activities. Tech. Rep. ORD Report (APM214), EPA/600/R-023, US Environmental Protection Agency, Washington, DC, 2006.

    Google Scholar 

  • Williams R., Suggs J., Creason J., Rodes C., Lawless P., Kwok R., Zweidinger R., and Sheldon L. The 1998 Baltimore particulate matter epidemiology-exposure study: part 2. Personal exposure assessment associated with an elderly study population. J Expo Anal Environ Epidemiol 2000a: 10: 533–543.

    Article  CAS  PubMed  Google Scholar 

  • Williams R., Suggs J., Zweidinger R., Evans G., Creason J., Kwok R., Rodes C., Lawless P., and Sheldon L. The 1998 Baltimore particulate matter epidemiology-exposure study: part 1. Comparison of ambient, residential outdoor, indoor and apartment particulate matter monitoring. J Expo Anal Environ Epidemiol 2000b: 10: 518–532.

    Article  CAS  PubMed  Google Scholar 

  • Wilson W.E., and Brauer M. Estimation of ambient and non-ambient components of particulate matter exposure from a personal monitoring panel study. J Expo Sci Environ Epidemiol 2006: 16: 264–274.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank John Creason (USEPA) and Debra Walsh (USEPA) for their assistance with health measures data, as well as Charles Rodes and the staff of RTI International for their collection of field exposure data. The authors thank the reviewer for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron W Williams.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Disclaimer

This paper is now being subjected to external peer review and has not been cleared for publication by the US Environmental Protection Agency. The US Environmental Protection Agency through its Office of Research and Development funded and conducted the research described herein through contract 3D-5925-WATX and 4D-5895-WATX to Dr. Sandra McBride. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Appendix A

Appendix A

WinBUGS code

model;

{

## model for first 119 obs with both HRV and PM personal mmts

## separate loop for first observation since this is a lag 1 model and

## an observation at time 0 is not available; see defn of errorfirst.

for (obsnum in 1:1){

## measurement error model for observed HRV observations

Z[obsnum]dnorm(H[obsnum],tau.H);

## regression equation for unknown HRV

H[obsnum] <- beta[Person[obsnum]]+Hcoef[1]+Hcoef[2]*age[obsnum]+Hcoef[3]*cvcompro[obsnum]+Hcoef[4]*sex[obsnum]+Hcoef[5]*M.P.tot.lag1[obsnum]+Tcoef[1]*a.temp1[day.num[obsnum]]+Tcoef[2]*a.temp2[day.num[obsnum]]+Tcoef[3]* a.temp3[day.num[obsnum]]+Tcoef[4]*a.temp4[day.num[obsnum]]+error[obsnum];

## first observation of error is set to be random and is the same for all individuals

error[obsnum]<-errorfirst;

## measurement error model for observed PM2.5

Y.P.lag1[obsnum]dnorm(M.P.tot.lag1[obsnum],tau.M.P.tot);

## unknown total personal PM2.5 exposure as sum of ambient and

## non-ambient components

M.P.tot.lag1[obsnum]<-M.P.NA.lag1+M.P.A.lag1[obsnum];

## unknown personal PM2.5 of ambient origin as product of infiltration

## and unknown ambient PM2.5

M.P.A.lag1[obsnum]<-gamma1*PMC[day.num[obsnum]];

}

## loop for remaining 118 observations for which both HRV and PM2.5 are

## available (same code as above except for defn of “error[obsnum]”)

for (obsnum in 2:119){

Z[obsnum]dnorm(H[obsnum],tau.H);

H[obsnum] <- beta[Person[obsnum]]+Hcoef[1]+Hcoef[2]*age[obsnum]+Hcoef[3]*cvcompro[obsnum]+Hcoef[4]*sex[obsnum]+Hcoef[5]*M.P.tot.lag1[obsnum]+Tcoef[1]*a.temp1[day.num[obsnum]]+Tcoef[2]*a.temp2[day.num[obsnum]]+Tcoef[3]*a.temp3[day.num[obsnum]]+Tcoef[4]*a.temp4[day.num[obsnum]]+error[obsnum];

##Definition of error term in terms of previous observations

##Indicator variable “Frst” indicates whether this observation

##is the first in the time series for a given individual.

error[obsnum]<-Frst[obsnum]*errorfirst+(1−Frst[obsnum])*(exp(−alpha*delta[obsnum])*error[obsnum-1]);

Y.P.lag1[obsnum]dnorm(M.P.tot.lag1[obsnum],tau.M.P.tot);

M.P.tot.lag1[obsnum]<-M.P.NA.lag1+M.P.A.lag1[obsnum];

M.P.A.lag1[obsnum]<-gamma1*PMC[day.num[obsnum]];

}

### model for remaining measurements with HRV only, no personal PM mmts

for (obsnum in 120:658){

Z[obsnum]dnorm(H[obsnum],tau.H);

H[obsnum] <- beta[Person[obsnum]]+Hcoef[1]+Hcoef[2]*age[obsnum]+Hcoef[3]*cvcompro[obsnum]+Hcoef[4]*sex[obsnum]+Hcoef[5]*M.P.tot.lag1[obsnum]+Tcoef[1]*a.temp1[day.num[obsnum]]+Tcoef[2]*a.temp2[day.num[obsnum]]+Tcoef[3]*a.temp3[day.num[obsnum]]+Tcoef[4]*a.temp4[day.num[obsnum]]+error[obsnum];

error[obsnum]<-Frst[obsnum]*errorfirst+(1−Frst[obsnum])*(exp(−alpha*delta[obsnum])*error[obsnum-1]);

M.P.tot.lag1[obsnum]<-M.P.NA.lag1+M.P.A.lag1[obsnum];

M.P.A.lag1[obsnum]<-gamma1*PMC[day.num[obsnum]];

}

## random subject-specific effect

for (i in 1:56){

beta[i]dnorm(0.0,tau.b);

}

## non-ambient PM2.5 personal

M.P.NA.lag1dnorm(mu.MPNA,tau.MPNA);

## personal sulfur measurements are X.Ind

## gamma1 is the infiltration factor

for (i in 1:N.sulfur){

X.Ind[i]dnorm(Sulfur.Ind[i],tau.meas.sulfurInd);

Sulfur.Ind[i]<-gamma1*SulfurC[day.num.sulfur[i]]+errgamma1;

}

## submodel for outdoor sulfur; mean is linear function of meteorology

## outdoor sulfur measurements are X.C

## separate models for day 1 and days 2–29 since for day 1

## a mean of sulfur at day 0 is needed; this is set to be random

for (t in 1:1){

X.C[t]dnorm(SulfurC[t],tau.meas.sulfurC);

SulfurC[t]dnorm(mu.sulfurC[t],tau.mean.sulfurC);

mu.sulfurC[t] <- Scoef[1]+Scoef[2]*humid[t]+Scoef[3]*humid.lag1[t]+Scoef[4]*vws[t]+Scoef[5]*vws.lag1[t]+Scoef[6]*temp[t]+Scoef[7]*temp.lag1[t]+rho.sulfurc*mu.sulfurc.t0+eps.sulfur;

}

for (t in 2:29){

X.C[t]dnorm(SulfurC[t],tau.meas.sulfurC);

SulfurC[t]dnorm(mu.sulfurC[t],tau.mean.sulfurC);

mu.sulfurC[t] <- Scoef[1]+Scoef[2]*humid[t]+Scoef[3]*humid.lag1[t]+Scoef[4]*vws[t]+Scoef[5]*vws.lag1[t]+Scoef[6]*temp[t]+Scoef[7]*temp.lag1[t]+rho.sulfurc*mu.sulfurC[t−1]+eps.sulfur;

}

## submodel for outdoor PM2.5 observations

## outdoor PM2.5 measurements are Y.C

for (t in 1:1){ ## for PM2.5

Y.C[t]dnorm(PMC[t],tau.meas.pmc);

PMC[t]dnorm(mu.pmc[t],tau.mean.pmc);

mu.pmc[t] <- PMCcoef[1]+PMCcoef[2]*humid[t]+PMCcoef[3]*humid.lag1[t]+PMCcoef[4]*vws[t]+PMCcoef[5]*vws.lag1[t]+PMCcoef[6]*dow[t]+ rho.pmc * mu.pmc.t0+eps.pmc;

}

for (t in 2:29){

Y.C[t]dnorm(PMC[t],tau.meas.pmc);

PMC[t]dnorm(mu.pmc[t],tau.mean.pmc);

mu.pmc[t] <- PMCcoef[1]+PMCcoef[2]*humid[t]+PMCcoef[3]*humid.lag1[t]+PMCcoef[4]*vws[t]+PMCcoef[5]*vws.lag1[t]+PMCcoef[6]*dow[t]+ rho.pmc * mu.pmc[t−1]+eps.pmc;

}

##############

### PRIORS ###

##############

## coefficients in regression equation for HRV

for (i in 1:5) {

Hcoef[i]dnorm(0.0,1.0E−2);

}

## error term in regression equation for HRV

alphadunif(0.0,20.0);

tau.H <- pow(sigma.tau.H,−2);

sigma.tau.Hdunif(0.0,100.0);

## scale parameter for random subject effect

tau.b <- pow(sigma.tau.b,−2);

sigma.tau.bdunif(0.0,100.0);

errorfirstdnorm(0,1.0E−2);

## coefficients in cubic splines for temperature

for (i in 1:4){

Tcoef[i]dnorm(0.0,1.0E−2);

}

## scale parameter for measured personal sulfur

tau.meas.sulfurInd<-pow(sigma.tau.meas.sulfurInd,−2);

sigma.tau.meas.sulfurInddunif(0.0, 100.0);

## scale parameter for total personal PM2.5 exposure

tau.M.P.tot<-pow(sigma.tau.M.P.tot,−2);

sigma.tau.M.P.totdunif(0.0, 100.0);

## parameters in non-ambient personal PM2.5 exposure

mu.MPNAdnorm(5.0,1.0E−2);

tau.MPNA<-pow(sigma.tau.MPNA,−2);

sigma.tau.MPNAdunif(0.0, 100.0);

## infiltration factor

gamma1dbeta(1.0,1.0);

errgamma1dnorm(0.0,1.0E−2);

## priors for terms in model for outdoor sulfur

eps.sulfurdnorm(0.0,1.0E−2);

rho.sulfurcdunif(−1,1);

mu.sulfurc.t0dnorm(2.3,1.0E−2);

for (i in 1:7){

Scoef[i]dnorm(0.0,1.0E−2);

}

tau.meas.sulfurC<-pow(sigma.tau.meas.sulfurC,−2);

sigma.tau.meas.sulfurCdunif(0.0,100.0);

tau.mean.sulfurC<-pow(sigma.tau.mean.sulfurC,−2);

sigma.tau.mean.sulfurCdunif(0.0, 100.0);

## priors for terms in model for outdoor PM2.5

eps.pmcdnorm(0.0,1.0E−2);

rho.pmcdunif(−1,1);

mu.pmc.t0dnorm(18,1.0E−2);

for (i in 1:6){

PMCcoef[i]dnorm(0.0, 1.0E−2);

}

tau.meas.pmc<-pow(sigma.tau.meas.pmc,−2);

sigma.tau.meas.pmcdunif(0.0,100.0);

tau.mean.pmc<-pow(sigma.tau.mean.pmc,−2);

sigma.tau.mean.pmcdunif(0.0,100.0);

}

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mcbride, S., Norris, G., Williams, R. et al. Bayesian hierarchical modeling of cardiac response to particulate matter exposure. J Expo Sci Environ Epidemiol 21, 74–91 (2011). https://doi.org/10.1038/jes.2009.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2009.58

Keywords

This article is cited by

Search

Quick links