Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integrative Biology

Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients

Abstract

Objective:

Fibroblast growth factor (FGF)-21, and possibly FGF19, protect against type 2 diabetes mellitus (T2DM) and obesity in rodents. We investigated the circulating levels of FGF21 and FGF19 in obese patients with varying degrees of abnormal glucose homeostasis, and we determined gene expression for FGF receptors (FGFR1–4) and the co-receptor β-Klotho, in liver and adipose tissues.

Subjects and methods:

We analyzed 35 lean healthy (71% men) and 61 obese patients (49% men, median body mass index (BMI): 40.5 kg m−2, interquartile range: 34.7–46.2). Among obese patients, 36 were normoglycemic, 15 showed impaired glucose tolerance and 10 had T2DM. Biopsies from liver and visceral and subcutaneous fat from a subset of obese patients and controls were analyzed. FGF19 and FGF21 levels were measured using enzyme-linked immunosorbent assay, and tissue mRNA and protein levels by reverse transcription-polymerase chain reaction and immunoblotting.

Results:

FGF21 serum levels were significantly increased in obese patients compared with controls (P<0.001), whereas FGF19 levels were decreased (P<0.001). FGF21 levels were positively correlated with homeostasis model assessment of insulin resistance (P=0.0002, r=0.37) and insulin (P=0.001, r=0.32), whereas FGF19 levels were negatively correlated (P=0.007, r=−0.27; P=0.003, r=−0.28; respectively). After adjusting for BMI, the correlations of FGF21 and FGF19 levels with indicators of abnormal glucose homeostasis were not significant. In obese patients, the hepatic expression of FGF21 was increased. (P=0.04). β-Klotho transcript levels in visceral fat (P=0.002) and β-Klotho protein levels in subcutaneous (P=0.03) and visceral fat (P=0.04) were significantly reduced in obese patients, whereas hepatic levels for β-Klotho (P=0.03), FGFR1 (P=0.04) and FGFR3 (P=0.001) transcripts were significantly increased.

Conclusions:

Obesity is characterized by reciprocal alterations in FGF19 (decrease) and FGF21 (increase) levels. Although worsened in diabetic obese patients, obesity itself appears as the predominant determinant of the abnormalities in FGF21 and FGF19 levels. Opposite changes in β-Klotho expression in fat and liver indicate potential tissue-specific alterations in the responsiveness to endocrine FGFs in obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115: 1627–1635.

    Article  CAS  Google Scholar 

  2. Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002; 143: 1741–1747.

    Article  CAS  Google Scholar 

  3. Nishimura T, Nakatake Y, Konishi M, Itoh N . Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000; 1492: 203–206.

    Article  CAS  Google Scholar 

  4. Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 2010; 139: 456–463.

    Article  CAS  Google Scholar 

  5. Mai K, Andres J, Biedasek K, Weicht J, Bobbert T, Sabath M et al. Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes 2009; 58: 1532–1538.

    Article  CAS  Google Scholar 

  6. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5: 415–425.

    Article  CAS  Google Scholar 

  7. Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009; 58: 250–259.

    Article  CAS  Google Scholar 

  8. Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008; 149: 6018–6027.

    Article  CAS  Google Scholar 

  9. Murphy M, Samms R, Warner A, Bolborea M, Barrett P, Fowler MJ et al. Increased responses to the actions of fibroblast growth factor 21 on energy balance and body weight in a seasonal model of adiposity. J Neuroendocrinol 2013; 25: 180–189.

    Article  CAS  Google Scholar 

  10. Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M et al. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology 2012; 153: 69–80.

    Article  CAS  Google Scholar 

  11. Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, DeFronzo RA, Tripathy D . Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 2009; 32: 1542–1546.

    Article  CAS  Google Scholar 

  12. Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008; 57: 1246–1253.

    Article  CAS  Google Scholar 

  13. Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 2010; 59: 2781–2789.

    Article  CAS  Google Scholar 

  14. Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K et al. Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 2011; 27: 286–297.

    Article  CAS  Google Scholar 

  15. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013; 18: 333–340.

    Article  CAS  Google Scholar 

  16. Bobbert T, Schwarz F, Fischer-Rosinsky A, Pfeiffer AF, Mohlig M, Mai K et al. Fibroblast growth factor 21 predicts the metabolic syndrome and type 2 diabetes in Caucasians. Diabetes Care 2013; 36: 145–149.

    Article  CAS  Google Scholar 

  17. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2: 217–225.

    Article  CAS  Google Scholar 

  18. Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 2004; 145: 2594–2603.

    Article  CAS  Google Scholar 

  19. Bhatnagar S, Damron HA, Hillgartner FB . Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J Biol Chem 2009; 284: 10023–10033.

    Article  CAS  Google Scholar 

  20. Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011; 331: 1621–1624.

    Article  CAS  Google Scholar 

  21. Wu X, Ge H, Lemon B, Weiszmann J, Gupte J, Hawkins N et al. Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proc Natl Acad Sci USA 2009; 106: 14379–14384.

    Article  CAS  Google Scholar 

  22. Mraz M, Lacinova Z, Kavalkova P, Haluzikova D, Trachta P, Drapalova J et al. Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-alpha agonist treatment. Physiol Res 2011; 60: 627–636.

    CAS  PubMed  Google Scholar 

  23. Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT, Gabrielsen J et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 2013; 36: 1859–1864.

    Article  CAS  Google Scholar 

  24. Gallego-Escuredo JM, Gomez-Ambrosi J, Catalan V, Domingo P, Giralt M, Fruhbeck G et al. Alterations in the FGF19 hormone factor in obese patients. Effect of weight loss. Obes Rev 2011; 12 (Suppl 1): 217 (abstract p.115).

  25. Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007; 282: 26687–26695.

    Article  CAS  Google Scholar 

  26. Wu X, Li Y . Role of FGF19 induced FGFR4 activation in the regulation of glucose homeostasis. Aging (Albany NY) 2009; 1: 1023–1027.

    Article  CAS  Google Scholar 

  27. Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M et al. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 2008; 22: 1006–1014.

    Article  CAS  Google Scholar 

  28. Kuro-o M . Klotho and betaKlotho. Adv Exp Med Biol 2012; 728: 25–40.

    Article  CAS  Google Scholar 

  29. Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA 2007; 104: 7432–7437.

    Article  CAS  Google Scholar 

  30. Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA 2009; 106: 10853–10858.

    Article  CAS  Google Scholar 

  31. Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 2011; 152: 2996–3004.

    Article  CAS  Google Scholar 

  32. Adams AC, Yang C, Coskun T, Cheng CC, Gimeno RE, Luo Y et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab 2012; 2: 31–37.

    Article  CAS  Google Scholar 

  33. Ginde SR, Geliebter A, Rubiano F, Silva AM, Wang J, Heshka S et al. Air displacement plethysmography: validation in overweight and obese subjects. Obes Res 2005; 13: 1232–1237.

    Article  Google Scholar 

  34. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003; 26: 3160–3167.

    Article  Google Scholar 

  35. Catalan V, Gomez-Ambrosi J, Ramirez B, Rotellar F, Pastor C, Silva C et al. Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg 2007; 17: 1464–1474.

    Article  Google Scholar 

  36. Gomez-Ambrosi J, Salvador J, Rotellar F, Silva C, Catalan V, Rodriguez A et al. Increased serum amyloid A concentrations in morbid obesity decrease after gastric bypass. Obes Surg 2006; 16: 262–269.

    Article  Google Scholar 

  37. Gomez-Ambrosi J, Catalan V, Ramirez B, Rodriguez A, Colina I, Silva C et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metab 2007; 92: 3719–3727.

    Article  CAS  Google Scholar 

  38. Sugiuchi H, Uji Y, Okabe H, Irie T, Uekama K, Kayahara N et al. Direct measurement of high-density lipoprotein cholesterol in serum with polyethylene glycol-modified enzymes and sulfated alpha-cyclodextrin. Clin Chem 1995; 41: 717–723.

    CAS  PubMed  Google Scholar 

  39. Domingo P, Gallego-Escuredo JM, Domingo JC, Gutierrez MM, Mateo MG, Fernandez I et al. Serum FGF21 levels are elevated in association with lipodystrophy, insulin resistance and biomarkers of liver injury in HIV-1-infected patients. AIDS 2010; 24: 2629–2637.

    Article  CAS  Google Scholar 

  40. Aerts JL, Gonzales MI, Topalian SL . Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR. Biotechniques 2004; 36: 84–1.

    Article  CAS  Google Scholar 

  41. Gabrielsson BG, Johansson JM, Jennische E, Jernas M, Itoh Y, Peltonen M et al. Depot-specific expression of fibroblast growth factors in human adipose tissue. Obes Res 2002; 10: 608–616.

    Article  CAS  Google Scholar 

  42. Jones S . Mini-review: endocrine actions of fibroblast growth factor 19. Mol Pharm 2008; 5: 42–48.

    Article  CAS  Google Scholar 

  43. Sakamuri VP, Ananthathmakula P, Veettil GN, Ayyalasomayajula V . Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats. Nutr J 2011; 10: 70.

    Article  CAS  Google Scholar 

  44. Mai K, Schwarz F, Bobbert T, Andres J, Assmann A, Pfeiffer AF et al. Relation between fibroblast growth factor-21, adiposity, metabolism, and weight reduction. Metabolism 2011; 60: 306–311.

    Article  CAS  Google Scholar 

  45. Straczkowski M, Karczewska-Kupczewska M, Adamska A, Otziomek E, Kowalska I, Nikolajuk A . Serum fibroblast growth factor 21 in human obesity: regulation by insulin infusion and relationship with glucose and lipid oxidation. Int J Obes (Lond) 2013; 37: 1386–1390.

    Article  CAS  Google Scholar 

  46. Chen C, Cheung BM, Tso AW, Wang Y, Law LS, Ong KL et al. High plasma level of fibroblast growth factor 21 is an Independent predictor of type 2 diabetes: a 5.4-year population-based prospective study in Chinese subjects. Diabetes Care 2011; 34: 2113–2115.

    Article  CAS  Google Scholar 

  47. Gallego-Escuredo JM, Domingo P, Gutierrez MM, Mateo MG, Cabeza MC, Fontanet A et al. Reduced levels of serum FGF19 and impaired expression of receptors for endocrine FGFs in adipose tissue from HIV-infected patients. J Acquir Immune Defic Syndr 2012; 61: 527–534.

    Article  CAS  Google Scholar 

  48. Hondares E, Gallego-Escuredo JM, Flachs P, Frontini A, Cereijo R, Goday A et al. Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism 2014; 63: 312–317.

    Article  CAS  Google Scholar 

  49. Reinehr T, Woelfle J, Wunsch R, Roth CL . Fibroblast growth factor 21 (FGF-21) and its relation to obesity, metabolic syndrome, and nonalcoholic fatty liver in children: a longitudinal analysis. J Clin Endocrinol Metab 2012; 97: 2143–2150.

    Article  CAS  Google Scholar 

  50. Li X, Fan X, Ren F, Zhang Y, Shen C, Ren G et al. Serum FGF21 levels are increased in newly diagnosed type 2 diabetes with nonalcoholic fatty liver disease and associated with hsCRP levels independently. Diabetes Res Clin Pract 2011; 93: 10–16.

    Article  CAS  Google Scholar 

  51. Morton GJ, Kaiyala KJ, Foster-Schubert KE, Cummings DE, Schwartz MW . Carbohydrate feeding dissociates the postprandial FGF19 response from circulating bile acid levels in humans. J Clin Endocrinol Metab 2014; 99: E241–E245.

    Article  CAS  Google Scholar 

  52. Zhang M, Liu Y, Xiong ZY, Deng ZY, Song HL, An ZM . Changes of plasma fibroblast growth factor-21 (FGF-21) in oral glucose tolerance test and effects of metformin on FGF-21 levels in type 2 diabetes mellitus. Endokrynol Pol 2013; 64: 220–224.

    CAS  PubMed  Google Scholar 

  53. Diaz-Delfin J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F . TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology 2012; 153: 4238–4245.

    Article  CAS  Google Scholar 

  54. Nygaard EB, Moller CL, Kievit P, Grove KL, Andersen B . Increased fibroblast growth factor 21 expression in high-fat diet-sensitive non-human primates (Macaca mulatta). Int J Obes (Lond) 2014; 38: 183–191.

    Article  CAS  Google Scholar 

  55. Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC, Mangelsdorf DJ et al. betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 2012; 16: 387–393.

    Article  CAS  Google Scholar 

  56. Fu T, Choi SE, Kim DH, Seok S, Suino-Powell KM, Xu HE et al. Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor beta-Klotho. Proc Natl Acad Sci USA 2012; 109: 16137–16142.

    Article  CAS  Google Scholar 

  57. Kharitonenkov A, Larsen P . FGF21 reloaded: challenges of a rapidly growing field. Trends Endocrinol Metab 2011; 22: 81–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the MINECO (Spain) SAF2011-23636, Instituto de Salud Carlos III (Spain) PI11/00376 and PI11/02512, and EU FP7 BETABAT (HEALTH-F2-2011-277713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Villarroya.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallego-Escuredo, J., Gómez-Ambrosi, J., Catalan, V. et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes 39, 121–129 (2015). https://doi.org/10.1038/ijo.2014.76

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.76

This article is cited by

Search

Quick links