Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PTPIP51 interaction with PTP1B and 14-3-3β in adipose tissue of insulin-resistant mice

Abstract

Objective:

We investigated the expression of protein tyrosine phosphatase-interacting protein 51 (PTPIP51) and its interaction with protein tyrosine phosphatase 1B (PTP1B) and 14-3-3β in mice exhibiting insulin resistance and obesity.

Design:

A total of 20 mice were included in the study. Eight control animals were fed a normal standard diet, six animals were fed a high-fat diet and six animals were submitted to a treadmill training parallel to the feeding of a high-fat diet. After 10 weeks, a glucose tolerance test was performed and abdominal adipose tissue samples of the animals were collected.

Results:

PTPIP51 protein was identified in the adipocytes of all samples. PTPIP51 interacted with PTP1B and with 14-3-3β protein. Compared with untrained mice fed a standard diet, the interaction of PTPIP51 with PTP1B was reduced in high-fat diet-fed animals. The highest interaction of PTPIP51 with 14-3-3β was seen in trained animals on high-fat diet, whereas untrained animals on high-fat diet displayed lowest values.

Conclusion:

PTPIP51 is expressed in adipose tissue of humans, rats and mice. Obesity with enhanced insulin resistance resulted in a reduction of PTPIP51 levels in adipocytes and influenced the interactions with PTP1B and 14-3-3β. The interaction of PTPIP51 with PTP1B suggests a regulatory function of PTPIP51 in insulin receptor signal transduction. The interaction of PTPIP51 with 14-3-3β, especially in trained individuals, hints to an involvement of PTPIP51 in the downstream regulation of insulin action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Choi SM, Tucker DF, Gross DN, Easton RM, Dipilato LM, Dean AS et al. Insulin regulates adipocyte lipolysis via an Akt-independent signalling pathway. Mol Cell Biol 2010; 30: 5009–5020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kenner KA, Anyanwu E, Olefsky JM, Kusari J . Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signalling. J Biol Chem 1996; 271: 19810–19816.

    Article  CAS  PubMed  Google Scholar 

  3. Seely BL, Staubs PA, Reichart DR, Berhanu P, Milarski KL, Saltiel AR et al. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 1996; 45: 1379–1385.

    Article  CAS  PubMed  Google Scholar 

  4. Calera MR, Vallega G, Pilch PF . Dynamics of protein-tyrosine phosphatases in rat adipocytes. J Biol Chem 2000; 275: 6308–6312.

    Article  CAS  PubMed  Google Scholar 

  5. Salmeen A, Andersen JN, Myers MP, Tonks NK, Barford D . Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell 2000; 6: 1401–1412.

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M . Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B: possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem 2000; 275: 4283–4289.

    Article  CAS  PubMed  Google Scholar 

  7. McGuire MC, Fields RM, Nyomba BL, Raz I, Bogardus C, Tonks NK et al. Abnormal regulation of protein tyrosine phosphatase activities in skeletal muscle of insulin-resistant humans. Diabetes 1991; 40: 939–942.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmad F, Goldstein BJ . Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism 1995; 44: 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  9. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 1544–1548.

    Article  CAS  PubMed  Google Scholar 

  10. Asante-Appiah E, Kennedy BP . Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am J Physiol Endocrinol Metab 2003; 284: 663–670.

    Article  Google Scholar 

  11. Stenzinger A, Schreiner D, Koch P, Hofer HW, Wimmer M . Cell and molecular biology of the novel protein tyrosine-phosphatase-interacting protein 51. Int Rev Cell Mol Biol 2009; 275: 183–246.

    Article  CAS  PubMed  Google Scholar 

  12. Brobeil A, Graf M, Oeschger S, Steger K, Wimmer M . PTPIP51-a myeloid lineage specific protein interacts with PTP1B in neutrophil granulocytes. Blood Cells Mol Dis 2010; 45: 159–168.

    Article  CAS  PubMed  Google Scholar 

  13. Bost F, Aouadi M, Caron L, Binétruy B . The role of MAPKs in adipocyte differentiation and obesity. Biochimie 2005; 87: 51–56.

    Article  CAS  PubMed  Google Scholar 

  14. Crowe S, Turpin SM, Ke F, Kemp BE, Watt MJ . Metabolic remodeling in adipocytes promotes ciliary neurotrophic factor-mediated fat loss in obesity. Endocrinology 2008; 149: 2546–2556.

    Article  CAS  PubMed  Google Scholar 

  15. Capeau J . Insulin signalling: mechanisms altered in insulin resistance. Med Sci (Paris) 2003; 19: 834–839.

    Article  Google Scholar 

  16. Storlien LH, Pan DA, Kriketos AD, Baur LA . High-fat-diet-induced insulin resistance. Lessons and implications from animal studies. Ann NY Acad Sci 1993; 683: 82–90.

    Article  CAS  PubMed  Google Scholar 

  17. Marques CM, Motta VF, Torres TS, Aguila MB, Mandarim-de-Lacerda CA . Beneficial effects of exercise training (treadmill) on insulin resistance and nonalcoholic fatty liver disease in high-fat fed C57BL/6 mice. Braz J Med Biol Res 2010; 43: 467–475.

    Article  CAS  PubMed  Google Scholar 

  18. Bradley RL, Jeon JY, Liu FF, Maratos-Flier E . Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab 2008; 295: 586–594.

    Article  Google Scholar 

  19. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  20. Olmsted JB . Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem 1981; 256: 11955–11957.

    CAS  PubMed  Google Scholar 

  21. Söderberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius KJ, Jarvius J et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006; 3: 995–1000.

    Article  PubMed  Google Scholar 

  22. Gullberg M, Andersson A-C . Visualization and quantification of protein-protein interactions in cells and tissues. Nat Methods 2010; 6: 641–647.

    Article  Google Scholar 

  23. Allalou A, Wählby C . BlobFinder, a tool for fluorescence microscopy image cytometry. Comput Methods Programs Biomed 2009; 94: 58–65.

    Article  CAS  PubMed  Google Scholar 

  24. Berger JJ, Barnard RJ . Effect of diet on fat cell size and hormone-sensitive lipase activity. J Appl Physiol 1999; 87: 227–232.

    Article  CAS  PubMed  Google Scholar 

  25. Kadowaki T, Hara K, Yamauchi T, Terauchi Y, Tobe K, Nagai R . Molecular mechanism of insulin resistance and obesity. Exp Biol Med (Maywood) 2003; 228: 1111–1117.

    Article  CAS  Google Scholar 

  26. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 2000; 20: 5479–5489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Venable CL, Frevert EU, Kim YB, Fischer BM, Kamatkar S, Neel BG et al. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation. J Biol Chem 2000; 275: 18318–18326.

    Article  CAS  PubMed  Google Scholar 

  28. Chen C, Zhang Y, Huang C . Berberine inhibits PTP1B activity and mimics insulin action. Biochem Biophys Res Commun 2010; 397: 543–547.

    Article  CAS  PubMed  Google Scholar 

  29. Ali MI, Ketsawatsomkron P, Belin de Chantemele EJ, Mintz JD, Muta K, Salet C et al. Deletion of protein tyrosine phosphatase 1b improves peripheral insulin resistance and vascular function in obese, leptin-resistant mice via reduced oxidant tone. Circ Res 2009; 105: 1013–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiang X, Yuan M, Song Y, Ruderman N, Wen R, Luo Z . 14-3-3 facilitates insulin-stimulated intracellular trafficking of insulin receptor substrate 1. Mol Endocrinol 2002; 3: 552–562.

    Article  Google Scholar 

  31. Onuma H, Osawa H, Yamada K, Ogura T, Tanabe F, Granner DK, Makino H . Identification of the insulin-regulated interaction of phosphodiesterase 3B with 14-3-3beta protein. Diabetes 2002; 51: 3362–3367.

    Article  CAS  PubMed  Google Scholar 

  32. Yu C, Han W, Shi T, Lv B, He Q, Zhang Y et al. PTPIP51, a novel 14-3-3 binding protein, regulates cell morphology and motility via Raf-ERK pathway. Cell Signal 2008; 20: 2208–2220.

    Article  CAS  PubMed  Google Scholar 

  33. Omar B, Zmuda-Trzebiatowska E, Manganiello V, Göransson O, Degerman E . Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell Signal 2009; 21: 760–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mantovani G, Bondioni S, Alberti L, Gilardini L, Invitti C, Corbetta S et al. Protein kinase A regulatory subunits in human adipose tissue: decreased R2B expression and activity in adipocytes from obese subjects. Diabetes 2009; 58: 620–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aitken A . 14-3-3 proteins: a historic overview. Semin Cancer Biol 2006; 16: 162–172.

    Article  CAS  PubMed  Google Scholar 

  36. Yu X, Jian R, Xinjiao G, Changjiang J, Longping W, Xuebiao Y . GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Moll Cell Proteomics 2008; 7: 1598–1609.

    Article  Google Scholar 

  37. Campbell JE, Fediuc S, Hawke TJ, Riddell MC . Endurance exercise training increases adipose tissue glucocorticoid exposure: adaptations that facilitate lipolysis. Metabolism 2009; 58: 651–660.

    Article  CAS  PubMed  Google Scholar 

  38. Nomura S, Kawanami H, Ueda H, Kizaki T, Ohno H, Izawa T . Possible mechanisms by which adipocyte lipolysis is enhanced in exercise-trained rats. Biochem Biophys Res Commun 2002; 295: 236–242.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms A Erkel and Ms B Fröhlich (Department of Urology and Paediatric Urology, Giessen, Germany) for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Bobrich.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrich, M., Brobeil, A., Mooren, F. et al. PTPIP51 interaction with PTP1B and 14-3-3β in adipose tissue of insulin-resistant mice. Int J Obes 35, 1385–1394 (2011). https://doi.org/10.1038/ijo.2010.283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.283

Keywords

This article is cited by

Search

Quick links