Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

High cerebrospinal fluid levels of interleukin-10 attained by AAV in dogs

Abstract

Intrathecal (IT) gene transfer using adeno-associated virus (AAV) may be clinically promising as a treatment for chronic pain if it can produce sufficiently high levels of a transgene product in the cerebrospinal fluid (CSF). Although this strategy was developed in rodents, no studies investigating CSF levels of an analgesic or antiallodynic protein delivered by IT AAV have been performed in large animals. Interleukin-10 (IL-10) is an antiallodynic cytokine for which target therapeutic levels have been established in rats. The present study tested IT AAV8 encoding either human IL-10 (hIL-10) or enhanced green fluorescent protein (EGFP) in a dog model of IT drug delivery. AAV8/hIL-10 at a dose of 3.5 × 1012 genome copies induced high hIL-10 levels in the CSF, exceeding the target concentration previously found to be antiallodynic in rodents by >1000-fold. AAV8/EGFP targeted the primary sensory and motor neurons and the meninges. hIL-10, a xenogeneic protein in dogs, induced anti-hIL-10 antibodies detectable in the CSF and serum of dogs. The high hIL-10 levels demonstrate the efficacy of AAV for delivery of secreted transgenes into the IT space of large animals, suggesting a strong case for further development toward clinical testing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pizzo PA, Clark NM . Alleviating suffering 101—pain relief in the United States. N Engl J Med 2012; 366: 197–199.

    Article  CAS  Google Scholar 

  2. Milligan ED, Penzkover KR, Soderquist RG, Mahoney MJ . Spinal interleukin-10 therapy to treat peripheral neuropathic pain. Neuromodulation 2012; 15: 520–526.

    Article  Google Scholar 

  3. Chacur M, Milligan ED, Sloan EM, Wieseler-Frank J, Barrientos RM, Martin D et al. Snake venom phospholipase A2s (Asp49 and Lys49) induce mechanical allodynia upon peri-sciatic administration: involvement of spinal cord glia, proinflammatory cytokines and nitric oxide. Pain 2004; 108: 180–191.

    Article  CAS  Google Scholar 

  4. Laughlin TM, Bethea JR, Yezierski RP, Wilcox GL . Cytokine involvement in dynorphin-induced allodynia. Pain 2000; 84: 159–167.

    Article  CAS  Google Scholar 

  5. Kastin AJ, Akerstrom V, Pan W . Interleukin-10 as a CNS therapeutic: the obstacle of the blood–brain/blood–spinal cord barrier. Brain Res Mol Brain Res 2003; 114: 168–171.

    Article  CAS  Google Scholar 

  6. Milligan ED, Langer SJ, Sloane EM, He L, Wieseler-Frank J, O’Connor K et al. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur J Neurosci 2005; 21: 2136–2148.

    Article  Google Scholar 

  7. Milligan ED, Sloane EM, Langer SJ, Hughes TS, Jekich BM, Frank MG et al. Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain. Pain 2006; 126: 294–308.

    Article  CAS  Google Scholar 

  8. Soderquist RG, Milligan ED, Harrison JA, Chavez RA, Johnson KW, Watkins LR et al. PEGylation of interleukin-10 for the mitigation of enhanced pain states. J Biomed Mater Res A 2010; 93: 1169–1179.

    PubMed  PubMed Central  Google Scholar 

  9. Milligan ED, Soderquist RG, Malone SM, Mahoney JH, Hughes TS, Langer SJ et al. Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. Neuron Glia Biol 2006; 2: 293–308.

    Article  Google Scholar 

  10. Storek B, Reinhardt M, Wang C, Janssen WGM, Harder NM, Banck MS et al. Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. Proc Natl Acad Sci USA 2008; 105: 1055–1060.

    Article  CAS  Google Scholar 

  11. Zhou Z, Peng X, Hao S, Fink DJ, Mata M . HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor α in spinal cord microglia. Gene Therapy 2007; 15: 183–190.

    Article  Google Scholar 

  12. Lau D, Harte SE, Morrow TJ, Wang S, Mata M, Fink DJ . Herpes simplex virus vector-mediated expression of interleukin-10 reduces below-level central neuropathic pain after spinal cord injury. Neurorehabil Neural Rep 2012; 26: 889–897.

    Article  Google Scholar 

  13. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Bringas J, Forsayeth J et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the CSF of non-human primates. Hum Gene Ther 2013: 24: 526–532.

    Article  CAS  Google Scholar 

  14. Federici T, Taub JS, Baum GR, Gray SJ, Grieger JC, Matthews KA et al. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Therapy 2011: 19: 852–859.

    Article  Google Scholar 

  15. Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Jude Samulski R . Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Therapy 2013: 20: 450–459.

    Article  CAS  Google Scholar 

  16. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Foust KD, Bringas JR et al. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther 2012; 389: 382–389.

    Article  Google Scholar 

  17. Haurigot V, Marcó S, Ribera A, Garcia M, Ruzo A, Villacampa P et al. Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy. J Clin Invest 2013; 123: pii 66778.

    Article  Google Scholar 

  18. Vulchanova L, Schuster DJ, Belur LR, Riedl MS, Podetz-Pedersen KM, Kitto KF et al. Differential adeno-associated virus mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. Mol Pain 2010; 6: 31.

    Article  Google Scholar 

  19. Jacques SJ, Ahmed Z, Forbes A, Douglas MR, Vigenswara V, Berry M et al. AAV8(gfp) preferentially targets large diameter dorsal root ganglion neurones after both intra-dorsal root ganglion and intrathecal injection. Mol Cell Neurosci 2012; 49: 464–474.

    Article  CAS  Google Scholar 

  20. Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ . Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 2011; 19: 1058–1069.

    Article  CAS  Google Scholar 

  21. Milligan ED, Sloane EM, Langer SJ, Cruz PE, Chacur M, Spataro L et al. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain 2005; 1: 9.

    Article  Google Scholar 

  22. Finegold AA, Mannes AJ, Iadarola MJ . A paracrine paradigm for in vivo gene therapy in the central nervous system: treatment of chronic pain. Hum Gene Ther 1999; 10: 1251–1257.

    Article  CAS  Google Scholar 

  23. Chen G, Castro WL, Chow HH, Reichlin S . Clearance of 125I-labeled interleukin-6 from brain into blood following intracerebroventricular injection in rats. Endocrinology 1997; 138: 4830–4836.

    Article  CAS  Google Scholar 

  24. Carare RO, Hawkes CA, Weller RO . Afferent and efferent immunological pathways of the brain. Anatomy, function and failure. Brain Behav Immun 2014; 36: 9–14.

    Article  CAS  Google Scholar 

  25. Günther G, Haglund M, Lindquist L, Forsgren M, Andersson J, Andersson B et al. Tick-borne encephalitis is associated with low levels of interleukin-10 in cerebrospinal fluid. Infect Ecol Epidemiol 2011; 1: 1–6.

    Google Scholar 

  26. Zin CS, Nissen LM, O’Callaghan JP, Moore BJ, Smith MT . Preliminary study of the plasma and cerebrospinal fluid concentrations of IL-6 and IL-10 in patients with chronic pain receiving intrathecal opioid infusions by chronically implanted pump for pain management. Pain Med 2010; 11: 550–561.

    Article  Google Scholar 

  27. Huhn RD, Radwanski E, O’Connell SM, Sturgill MG, Clarke L, Cody RP et al. Pharmacokinetics and immunomodulatory properties of intravenously administered recombinant human interleukin-10 in healthy volunteers. Blood 1996; 87: 699–705.

    CAS  PubMed  Google Scholar 

  28. Rosenblum IY, Johnson RC, Schmahai TJ . Preclinical safety evaluation of recombinant human interleukin-10. Regul Toxicol Pharmacol 2002; 35: 56–71.

    Article  CAS  Google Scholar 

  29. Hadaczek P, Forsayeth J, Mirek H, Munson K, Bringas J, Pivirotto P et al. Transduction of nonhuman primate brain with adeno-associated virus serotype 1: vector trafficking and immune response. Hum Gene Ther 2009; 20: 225–237.

    Article  CAS  Google Scholar 

  30. Yaksh TL, Rathbun ML, Dragani JC, Malkmus S, Bourdeau AR, Richter P et al. Kinetic and safety studies on intrathecally infused recombinant-methionyl human brain-derived neurotrophic factor in dogs. Fundam Appl Toxicol 1997; 38: 89–100.

    Article  CAS  Google Scholar 

  31. Ciron C, Desmaris N, Colle M-A, Raoul S, Joussemet B, Vérot L et al. Gene therapy of the brain in the dog model of Hurler’s syndrome. Ann Neurol 2006; 60: 204–213.

    Article  CAS  Google Scholar 

  32. Ellinwood NM, Ausseil J, Desmaris N, Bigou S, Liu S, Jens JK et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol Ther 2011; 19: 251–259.

    Article  CAS  Google Scholar 

  33. Re F, Srinivasan R, Igarashi T, Marincola F, Childs R . Green fluorescent protein expression in dendritic cells enhances their immunogenicity and elicits specific cytotoxic T-cell responses in humans. Exp Hematol 2004; 32: 210–217.

    Article  CAS  Google Scholar 

  34. Stripecke R, Carmen Villacres M, Skelton D, Satake N, Halene S, Kohn D . Immune response to green fluorescent protein: implications for gene therapy. Gene Therapy 1999; 6: 1305–1312.

    Article  CAS  Google Scholar 

  35. Gambotto A, Dworacki G, Cicinnati V, Kenniston T, Steitz J, Tüting T et al. Immunogenicity of enhanced green fluorescent protein (EGFP) in BALB/c mice: identification of an H2-Kd-restricted CTL epitope. Gene Therapy 2000; 7: 2036–2040.

    Article  CAS  Google Scholar 

  36. Davidoff AM, Gray JT, Ng CYC, Zhang Y, Zhou J, Spence Y et al. Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther 2005; 11: 875–888.

    Article  CAS  Google Scholar 

  37. Nathwani AC, Rosales C, McIntosh J, Rastegarlari G, Nathwani D, Raj D et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol Ther 2011; 19: 876–885.

    Article  CAS  Google Scholar 

  38. Nathwani AC, Gray JT, Ng CYC, Zhou J, Spence Y, Waddington SN et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 2006; 107: 2653–2661.

    Article  CAS  Google Scholar 

  39. Wiese AJ, Rathbun M, Butt MT, Malkmus SA, Richter PJ, Osborn KG et al. Intrathecal substance p-saporin in the dog: distribution, safety, and spinal neurokinin-1 receptor ablation. Anesthesiology 2013; 119: 1163–1177.

    Article  CAS  Google Scholar 

  40. Allen JW, Mantyh PW, Horais K, Tozier N, Rogers SD, Ghilardi JR et al. Safety evaluation of intrathecal substance P-saporin, a targeted neurotoxin, in dogs. Toxicol Sci 2006; 91: 286–298.

    Article  CAS  Google Scholar 

  41. Rijsdijk M, van Wijck AJ, Kalkman CJ, Meulenhoff PC, Grafe MR, Steinauer J et al. Safety assessment and pharmacokinetics of intrathecal methylprednisolone acetate in dogs. Anesthesiology 2012; 116: 170–181.

    Article  CAS  Google Scholar 

  42. Yaksh TL, de Kater A, Dean R, Best BM, Miljanich GP . Pharmacokinetic analysis of ziconotide (SNX-111), an intrathecal N-type calcium channel blocking analgesic, delivered by bolus and infusion in the dog. Neuromodulation 2012; 15: 508–519.

    Article  Google Scholar 

  43. Kern SE, Allen J, Wagstaff J, Shafer SL, Yaksh T . The pharmacokinetics of the conopeptide contulakin-G (CGX-1160) after intrathecal administration: an analysis of data from studies in beagles. Anesth Analg 2007; 104: 1514–1520; table of contents.

    Article  CAS  Google Scholar 

  44. Yaksh TL, Allen JW, Veesart SL, Horais Ka, Malkmus Sa, Scadeng M et al. Role of meningeal mast cells in intrathecal morphine-evoked granuloma formation. Anesthesiology 2013; 118: 664–678.

    Article  CAS  Google Scholar 

  45. Pleticha J, Jeng-Singh C, Rezek R, Zaibak M, Beutler AS . Intraneural convection enhanced delivery of AAVrh20 for targeting primary sensory neurons. Mol Cell Neurosci 2014; 60: 72–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by NIH Grant R01NS063022 and funds from the Schulze Family Foundation. We thank the anonymous reviewer for pointing toward the literature on cytokine exit from the CSF to the general circulation and references 23 and 24 included in the revised version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S Beutler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pleticha, J., Malkmus, S., Heilmann, L. et al. High cerebrospinal fluid levels of interleukin-10 attained by AAV in dogs. Gene Ther 22, 202–208 (2015). https://doi.org/10.1038/gt.2014.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.96

This article is cited by

Search

Quick links