Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HSV-mediated p55TNFSR reduces neuropathic pain induced by HIV gp120 in rats through CXCR4 activity

Abstract

Human immunodeficiency virus (HIV)-related neuropathic pain is a debilitating chronic condition that is severe and unrelenting. Despite extensive research, the detailed neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments. In this study, we investigated the role of proinflammatory molecules, tumor necrosis factor-α (TNFα), CXCR4 and stromal-derived factor-1 α (SDF1α), in the L4/5 dorsal root ganglia (DRG) and the spinal dorsal horn in HIV gp120 protein-mediated neuropathic pain. Our results showed that the application of HIV gp120 to the sciatic nerve induced upregulation of TNFα, CXCR4 and SDF1α in both the DRG and the lumbar spinal dorsal horn. Non-replicating herpes simplex virus (HSV) vector encoding the p55TNFSR gene and producing a TNF-soluble receptor (TNFSR) to block bioactivity of TNFα reversed mechanical allodynia. Intrathecal AMD3100 (CXCR4 antagonist) increased mechanical threshold. The HSV vectors expressing p55TNFSR reversed upregulation of TNFα, CXCR4 and SDF1α induced by gp120 in the DRG and the spinal dorsal horn. These studies suggest that proinflammatory TNFα to the CXCR4/SDF1 pathway has an important role in the HIV-related neuropathic pain state and that blocking the proinflammatory cytokines or chemokines is able to reduce neuropathic pain. This work provides a novel gene therapy proof-of-concept for HIV-associated neuropathic pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Theroux N, Phipps M, Zimmerman L, Relf MV . Neurological complications associated with HIV and AIDS: clinical implications for nursing. J Neurosci Nurs 2013; 45: 5–13.

    Article  Google Scholar 

  2. Keswani SC, Pardo CA, Cherry CL, Hoke A, McArthur JC . HIV-associated sensory neuropathies. AIDS 2002; 16: 2105–2117.

    Article  Google Scholar 

  3. Keswani SC, Jack C, Zhou C, Hoke A . Establishment of a rodent model of HIV-associated sensory neuropathy. J Neurosci 2006; 26: 10299–10304.

    Article  CAS  Google Scholar 

  4. Gabbai AA, Castelo A, Oliveira AS . HIV peripheral neuropathy. Handb Clin Neurol 2013; 115: 515–529.

    Article  Google Scholar 

  5. Cornblath DR, McArthur JC . Predominantly sensory neuropathy in patients with AIDS and AIDS-related complex. Neurology 1988; 38: 794–796.

    Article  CAS  Google Scholar 

  6. Kamerman PR, Moss PJ, Weber J, Wallace VC, Rice AS, Huang W . Pathogenesis of HIV-associated sensory neuropathy: evidence from in vivo and in vitro experimental models. J Peripher Nerv Syst 2012; 17: 19–31.

    Article  CAS  Google Scholar 

  7. Hao S . The molecular and pharmacological mechanisms of HIV-related neuropathic pain. Curr Neuropharmacol 2013; 11: 499–512.

    Article  CAS  Google Scholar 

  8. Shi Y, Gelman BB, Lisinicchia JG, Tang SJ . Chronic-pain-associated astrocytic reaction in the spinal cord dorsal horn of human immunodeficiency virus-infected patients. J Neurosci 2012; 32: 10833–10840.

    Article  CAS  Google Scholar 

  9. Hoke A, Morris M, Haughey NJ . GPI-1046 protects dorsal root ganglia from gp120-induced axonal injury by modulating store-operated calcium entry. J Peripher Nerv Syst 2009; 14: 27–35.

    Article  CAS  Google Scholar 

  10. Herzberg U, Sagen J . Peripheral nerve exposure to HIV viral envelope protein gp120 induces neuropathic pain and spinal gliosis. J Neuroimmunol 2001; 116: 29–39.

    Article  CAS  Google Scholar 

  11. Blackbeard J, Wallace VC, O'Dea KP, Hasnie F, Segerdahl A, Pheby T et al. The correlation between pain-related behaviour and spinal microgliosis in four distinct models of peripheral neuropathy. Eur J Pain 2012; 16: 1357–1367.

    Article  CAS  Google Scholar 

  12. Wallace VC, Blackbeard J, Segerdahl AR, Hasnie F, Pheby T, McMahon SB et al. Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain 2007; 130 (Pt 10): 2688–2702.

    Article  Google Scholar 

  13. Wallace VC, Blackbeard J, Pheby T, Segerdahl AR, Davies M, Hasnie F et al. Pharmacological, behavioural and mechanistic analysis of HIV-1 gp120 induced painful neuropathy. Pain 2007; 133: 47–63.

    Article  CAS  Google Scholar 

  14. Wallace VC, Segerdahl AR, Blackbeard J, Pheby T, Rice AS . Anxiety-like behaviour is attenuated by gabapentin, morphine and diazepam in a rodent model of HIV anti-retroviral-associated neuropathic pain. Neurosci Lett 2008; 448: 153–156.

    Article  CAS  Google Scholar 

  15. Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ et al. Glial TNFalpha in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 2011; 7: 40.

    Article  CAS  Google Scholar 

  16. Raghavendra V, Rutkowski MD, DeLeo JA . The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci 2002; 22: 9980–9989.

    Article  CAS  Google Scholar 

  17. Watkins LR, Milligan ED, Maier SF . Glial activation: a driving force for pathological pain. Trends Neurosci 2001; 24: 450–455.

    Article  CAS  Google Scholar 

  18. DeLeo JA, Tanga FY, Tawfik VL . Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 2004; 10: 40–52.

    Article  CAS  Google Scholar 

  19. Leung L, Cahill CM . TNF-alpha and neuropathic pain—a review. J Neuroinflammation 2010; 7: 27.

    Article  Google Scholar 

  20. Gao YJ, Zhang L, Ji RR . Spinal injection of TNF-alpha-activated astrocytes produces persistent pain symptom mechanical allodynia by releasing monocyte chemoattractant protein-1. Glia 2010; 58: 1871–1880.

    Article  Google Scholar 

  21. Mocchetti I, Campbell LA, Harry GJ, Avdoshina V . When human immunodeficiency virus meets chemokines and microglia: neuroprotection or neurodegeneration? J Neuroimmune Pharmacol 2012; 8: 14.

    Google Scholar 

  22. Keswani SC, Polley M, Pardo CA, Griffin JW, McArthur JC, Hoke A . Schwann cell chemokine receptors mediate HIV-1 gp120 toxicity to sensory neurons. Ann Neurol 2003; 54: 287–296.

    Article  CAS  Google Scholar 

  23. Catani MV, Corasaniti MT, Navarra M, Nistico G, Finazzi-Agro A, Melino G . gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem 2000; 74: 2373–2379.

    Article  CAS  Google Scholar 

  24. Bhangoo SK, Ren D, Miller RJ, Chan DM, Ripsch MS, Weiss C et al. CXCR4 chemokine receptor signaling mediates pain hypersensitivity in association with antiretroviral toxic neuropathy. Brain Behav Immun 2007; 21: 581–591.

    Article  CAS  Google Scholar 

  25. Wilson NM, Jung H, Ripsch MS, Miller RJ, White FA . CXCR4 signaling mediates morphine-induced tactile hyperalgesia. Brain Behav Immun 2011; 25: 565–573.

    Article  CAS  Google Scholar 

  26. Homma Y, Brull SJ, Zhang JM . A comparison of chronic pain behavior following local application of tumor necrosis factor alpha to the normal and mechanically compressed lumbar ganglia in the rat. Pain 2002; 95: 239–246.

    Article  CAS  Google Scholar 

  27. Zhao C, Lu X, Bu X, Zhang N, Wang W . Involvement of tumor necrosis factor-alpha in the upregulation of CXCR4 expression in gastric cancer induced by Helicobacter pylori. BMC Cancer 2010; 10: 419.

    Article  Google Scholar 

  28. Wilson SP, Yeomans DC, Bender MA, Lu Y, Goins WF, Glorioso JC . Antihyperalgesic effects of infection with a preproenkephalin-encoding herpes virus. Proc Natl Acad Sci USA 1999; 96: 3211–3216.

    Article  CAS  Google Scholar 

  29. Goss JR, Mata M, Goins WF, Wu HH, Glorioso JC, Fink DJ . Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Therapy 2001; 8: 551–556.

    Article  CAS  Google Scholar 

  30. Braz J, Beaufour C, Coutaux A, Epstein AL, Cesselin F, Hamon M et al. Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J Neurosci 2001; 21: 7881–7888.

    Article  CAS  Google Scholar 

  31. Antunes bras J, Becker C, Bourgoin S, Lombard M, Cesselin F, Hamon M et al. Met-enkephalin is preferentially transported into the peripheral processes of primary afferent fibres in both control and HSV1-driven proenkephalin A overexpressing rats. Neuroscience 2001; 103: 1073–1083.

    Article  CAS  Google Scholar 

  32. Yokoyama H, Sasaki K, Franks ME, Goins WF, Goss JR, de Groat WC et al. Gene therapy for bladder overactivity and nociception with herpes simplex virus vectors expressing preproenkephalin. Hum Gene Ther 2009; 20: 63–71.

    Article  CAS  Google Scholar 

  33. Hao S, Mata M, Glorioso JC, Fink DJ . Gene transfer to interfere with TNFalpha signaling in neuropathic pain. Gene Therapy 2007; 14: 1010–1016.

    Article  CAS  Google Scholar 

  34. Sun J, Liu S, Mata M, Fink DJ, Hao S . Transgene-mediated expression of tumor necrosis factor soluble receptor attenuates morphine tolerance in rats. Gene Therapy 2012; 19: 101–108.

    Article  CAS  Google Scholar 

  35. Peng XM, Zhou ZG, Glorioso JC, Fink DJ, Mata M . Tumor necrosis factor-alpha contributes to below-level neuropathic pain after spinal cord injury. Ann Neurol 2006; 59: 843–851.

    Article  CAS  Google Scholar 

  36. Huang W, Zheng W, Ouyang H, Yi H, Liu S, Zeng W et al. Mechanical allodynia induced by nucleoside reverse transcriptase inhibitor is suppressed by p55TNFSR mediated by HSV through SDF1α/CXCR4 system in rats. Anesth Analg 2013, in press.

  37. Fink DJ, Wechuck J, Mata M, Glorioso JC, Goss J, Krisky D et al. Gene therapy for pain: results of a phase I clinical trial. Ann Neurol 2011; 70: 207–212.

    Article  CAS  Google Scholar 

  38. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL . Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53: 55–63.

    Article  CAS  Google Scholar 

  39. Dixon WJ . Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980; 20: 441–462.

    Article  CAS  Google Scholar 

  40. Oh SB, Tran PB, Gillard SE, Hurley RW, Hammond DL, Miller RJ . Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 2001; 21: 5027–5035.

    Article  CAS  Google Scholar 

  41. Dubovy P, Klusakova I, Svizenska I, Brazda V . Spatio-temporal changes of SDF1 and its CXCR4 receptor in the dorsal root ganglia following unilateral sciatic nerve injury as a model of neuropathic pain. Histochem Cell Biol 2010; 133: 323–337.

    Article  CAS  Google Scholar 

  42. Hao S, Wolfe D, Glorioso JC, Mata M, Fink DJ . Effects of transgene-mediated endomorphin-2 in inflammatory pain. Eur J Pain 2009; 13: 380–386.

    Article  CAS  Google Scholar 

  43. Yaksh TL, Rudy TA . Analgesia mediated by a direct spinal action of narcotics. Science 1976; 192: 1357–1358.

    Article  CAS  Google Scholar 

  44. Polydefkis M, Yiannoutsos CT, Cohen BA, Hollander H, Schifitto G, Clifford DB et al. Reduced intraepidermal nerve fiber density in HIV-associated sensory neuropathy. Neurology 2002; 58: 115–119.

    Article  CAS  Google Scholar 

  45. Martin C, Solders G, Sonnerborg A, Hansson P . Painful and non-painful neuropathy in HIV-infected patients: an analysis of somatosensory nerve function. Eur J Pain 2003; 7: 23–31.

    Article  Google Scholar 

  46. Roth MD, Whittaker KM, Choi R, Tashkin DP, Baldwin GC . Cocaine and sigma-1 receptors modulate HIV infection, chemokine receptors, and the HPA axis in the huPBL-SCID model. J Leukoc Biol 2005; 78: 1198–1203.

    Article  CAS  Google Scholar 

  47. Berman JW, Carson MJ, Chang L, Cox BM, Fox HS, Gonzalez RG et al. NeuroAIDS, drug abuse, and inflammation: building collaborative research activities. J Neuroimmune Pharmacol 2006; 1: 351–399.

    Article  Google Scholar 

  48. Mahajan SD, Schwartz SA, Nair MP . Immunological assays for chemokine detection in in-vitro culture of CNS cells. Biol Proced Online 2003; 5: 90–102.

    Article  CAS  Google Scholar 

  49. Williams KC, Burdo TH . HIV and SIV infection: the role of cellular restriction and immune responses in viral replication and pathogenesis. APMIS 2009; 117: 400–412.

    Article  CAS  Google Scholar 

  50. Gelman BB, Spencer JA, Holzer 3rd CE, Soukup VM . Abnormal striatal dopaminergic synapses in National NeuroAIDS Tissue Consortium subjects with HIV encephalitis. J Neuroimmune Pharmacol 2006; 1: 410–420.

    Article  Google Scholar 

  51. Jernigan TL, Gamst AC, Archibald SL, Fennema-Notestine C, Mindt MR, Marcotte TD et al. Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry 2005; 162: 1461–1472.

    Article  Google Scholar 

  52. Meeker RB . Feline immunodeficiency virus neuropathogenesis: from cats to calcium. J Neuroimmune Pharmacol 2007; 2: 154–170.

    Article  Google Scholar 

  53. Kaul M, Lipton SA . Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci USA 1999; 96: 8212–8216.

    Article  CAS  Google Scholar 

  54. Kaul M, Garden GA, Lipton SA . Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001; 410: 988–994.

    Article  CAS  Google Scholar 

  55. Ghafouri M, Amini S, Khalili K, Sawaya BE . HIV-1 associated dementia: symptoms and causes. Retrovirology 2006; 3: 28.

    Article  Google Scholar 

  56. Nath A, Hauser KF, Wojna V, Booze RM, Maragos W, Prendergast M et al. Molecular basis for interactions of HIV and drugs of abuse. J Acquir Immune Defic Syndr 2002; 31 (Suppl 2): S62–S69.

    Article  CAS  Google Scholar 

  57. Podhaizer EM, Zou S, Fitting S, Samano KL, El-Hage N, Knapp PE et al. Morphine and gp120 toxic interactions in striatal neurons are dependent on HIV-1 strain. J Neuroimmune Pharmacol 2012; 7: 877–891.

    Article  Google Scholar 

  58. Grimaldi LM, Martino GV, Franciotta DM, Brustia R, Castagna A, Pristera R et al. Elevated alpha-tumor necrosis factor levels in spinal fluid from HIV-1-infected patients with central nervous system involvement. Ann Neurol 1991; 29: 21–25.

    Article  CAS  Google Scholar 

  59. Mastroianni CM, Paoletti F, Valenti C, Vullo V, Jirillo E, Delia S . Tumour necrosis factor (TNF-alpha) and neurological disorders in HIV infection. J Neurol Neurosurg Psychiatry 1992; 55: 219–221.

    Article  CAS  Google Scholar 

  60. Perrella O, Carrieri PB, Guarnaccia D, Soscia M . Cerebrospinal fluid cytokines in AIDS dementia complex. J Neurol 1992; 239: 387–388.

    CAS  PubMed  Google Scholar 

  61. Ciardi M, Sharief MK, Thompson EJ, Salotti A, Vullo V, Sorice F et al. High cerebrospinal fluid and serum levels of tumor necrosis factor-alpha in asymptomatic HIV-1 seropositive individuals. Correlation with interleukin-2 and soluble IL-2 receptor. J Neurol Sci 1994; 125: 175–179.

    Article  CAS  Google Scholar 

  62. Tyor WR, Glass JD, Griffin JW, Becker PS, McArthur JC, Bezman L et al. Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol 1992; 31: 349–360.

    Article  CAS  Google Scholar 

  63. de Larranaga GF, Petroni A, Deluchi G, Alonso BS, Benetucci JA . Viral load and disease progression as responsible for endothelial activation and/or injury in human immunodeficiency virus-1-infected patients. Blood Coagul Fibrinolysis 2003; 14: 15–18.

    Article  CAS  Google Scholar 

  64. Achim CL, Heyes MP, Wiley CA . Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains. J Clin Invest 1993; 91: 2769–2775.

    Article  CAS  Google Scholar 

  65. An SF, Ciardi A, Giometto B, Scaravilli T, Gray F, Scaravilli F . Investigation on the expression of major histocompatibility complex class II and cytokines and detection of HIV-1 DNA within brains of asymptomatic and symptomatic HIV-1-positive patients. Acta Neuropathol 1996; 91: 494–503.

    Article  CAS  Google Scholar 

  66. Vitkovic L, da Cunha A, Tyor WR . Cytokine expression and pathogenesis in AIDS brain. Res Publ Assoc Res Nerv Ment Dis 1994; 72: 203–222.

    CAS  PubMed  Google Scholar 

  67. Dorsey SG, Morton PG . HIV peripheral neuropathy: pathophysiology and clinical implications. AACN Clin Issues 2006; 17: 30–36.

    Article  Google Scholar 

  68. Kitano K, Rivas CI, Baldwin GC, Vera JC, Golde DW . Tumor necrosis factor-dependent production of human immunodeficiency virus 1 in chronically infected HL-60 cells. Blood 1993; 82: 2742–2748.

    CAS  PubMed  Google Scholar 

  69. Williams R, Dhillon NK, Hegde ST, Yao H, Peng F, Callen S et al. Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes. Glia 2009; 57: 734–743.

    Article  Google Scholar 

  70. Sui Z, Sniderhan LF, Schifitto G, Phipps RP, Gelbard HA, Dewhurst S et al. Functional synergy between CD40 ligand and HIV-1 Tat contributes to inflammation: implications in HIV type 1 dementia. J Immunol 2007; 178: 3226–3236.

    Article  CAS  Google Scholar 

  71. Milligan ED, O'Connor KA, Nguyen KT, Armstrong CB, Twining C, Gaykema RP et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci 2001; 21: 2808–2819.

    Article  CAS  Google Scholar 

  72. Miller RJ, Jung H, Bhangoo SK, White FA . Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol 2009; 194: 417–449.

    Article  CAS  Google Scholar 

  73. Hesselgesser J, Halks-Miller M, DelVecchio V, Peiper SC, Hoxie J, Kolson DL et al. CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Curr Biol 1997; 7: 112–121.

    Article  CAS  Google Scholar 

  74. Bhangoo SK, Ripsch MS, Buchanan DJ, Miller RJ, White FA . Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy. Mol Pain 2009; 5: 48.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH DA026734 (SH), DA025527 (SH) and NS066792 (SH). WH was supported by Sun Yat-Sen University, China. RCL was supported by NIH DE022903. We greatly acknowledge Dr David Fink and Dr Marina Mata (Department of Neurology, University of Michigan, Ann Arbor, MI, USA) providing the high-quality HSV vectors and the excellent technical assistance of Vikram Thakur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Hao.

Ethics declarations

Competing interests

These authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Zheng, W., Liu, S. et al. HSV-mediated p55TNFSR reduces neuropathic pain induced by HIV gp120 in rats through CXCR4 activity. Gene Ther 21, 328–336 (2014). https://doi.org/10.1038/gt.2013.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.90

Keywords

This article is cited by

Search

Quick links